

PARCEL 1 SILVER OAKS COURT PLEASANTON, CA EXTERIOR COLORS

SHEET INDEX
Front Elevation Rendering
First Floor Plan
First Floor Pan
Second Floor Plan
Roof Plan
Exterior Elevations
Exterior Elevations
PUD 116 - Parcel 1
Pleasanton, CA
Frank Berlogar

Roof Plan
PUD 116 - Parcel 1
Pleasanton, CA
Frank Berlogar

Rear

Front

Exterior Elevations

PUD 116 - Parcel 1
Pleasanton, CA
Frank Berlogar

Right

Left
Exterior Elevations
PUD 116 - Parcel 1
Pleasanton, CA
Frank Berlogar

water budget calculations:

Esisf :

roise pri
Ea, 84

IRRIGATION SYSTEM DESIGN NOTES:

2.

6.

8. ORAM

View 1 - Existing
PUD 116 - Parcel 1
Pleasanton, CA
Frank Berlogar

View 1 - With Proposed Rendering
Residence Height: 28'-4"
PUD 116 - Parcel 1
Pleasanton, CA
Frank Berlogar

View 1 - With Proposed Rendering
Residence Height: $25^{\prime}-0^{\prime \prime}$
PUD 116 - Parcel 1
Pleasanton, CA
Frank Berlogar

View 1 - With Proposed Rendering Residence Height: 25'-0"

PUD 116 - Parcel 1

Pleasanton, CA
Frank Berlogar

PARCEL 2 SILVER OAKS COURT PLEASANTON, CA EXTERIOR COLORS

SHEET INDEX
Front Elevation Rendering
First floor Plan
Second Floor Plan
Second floor
Roof Plan
Roof Plan
Exterior Elevations

Exxerior Elevations
Exterior Elevations

PUD 116 - Parcel 1
Pleasanton, CA
Frank Berlogar

Roof Plan
PUD 116 - Parcel 1

Rear

Front
Exterior Elevations

PUD 116 - Parcel 1
Pleasanton, CA
Frank Berlogar

Right

Left
Exterior Elevations

 s．ent

View 1 - Existing
PUD 116 - Parcel 2
Pleasanton, CA
Frank Berlogar

View 1 - With Proposed Rendering

PUD 116 - Parcel 2
Pleasanton, CA
Frank Berlogar

WIllam Hezmalhalch

April 21, 2016

View 1 - With Proposed Rendering

PUD 116 - Parcel 2

Assessment of Trees
 at
 88 Silver Oaks
 Pleasanton, California

Field Visit:
Walter Levison, Consulting Arborist (WLCA)
2/2/2016

Report by WLCA
Version: 2/2/2016
ASCA Registered Consulting Arborist \#401/ ISA Tree Risk Assessment Qualified / ISA Certified Arborist \#WC-3172
Table of Contents
1.0 Summary 3
2.0 Assignment \& Background 4
3.0 Observations and Discussion 5
4.0 Tree Location \& Protection Fence Map 6
5.0 Recommendations 7
6.0 Author's Qualifications 13
7.0 Assumptions and Limiting Conditions 14
8.0 Certification 15
9.0 Digital Images 15
10.0 Attached: Appraisal Worksheet 20
11.0 Attached: Excel Tree Data Charts 20

ASCA Registered Consulting Arborist \#401/ ISA Tree Risk Assessment Qualified / ISA Certified Arborist \#WC-3172

1.0 Summary

1. Sixteen (16) heritage trees were tagged and assessed by Walter Levison, Consulting Arborist (WLCA), per requirement by the City of Pleasanton. These trees are tag numbers \#1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 18.

All of these trees are expected to be protected and retained, except for possibly tree \#7 which is in very poor condition due to a structure defect (active fork crack) in the lower trunk area which may cause the tree to fail catastrophically.

The owner notes that an area of fill soil will be built up in the east portion of the tree \#9 canopy dripline (see tree map markup below in this report). The presence of this fill is not expected to be a problem in terms of negatively affecting tree health or structure. The area proposed to be filled is currently an asphalt surfaced roadway.
2. Two (2) non-heritage size trees \#2 and \#17 were also tagged and assessed by WLCA.

Tree \#2 is to be protected and retained.
Tree \#17 is a standing stump that can either be removed, or retained as a wildlife attractor for woodpecker nesting purposes, etc.
3. Risk tree management:

Tree \#7 can either be removed outright, or an attempt can be made to salvage the tree through the following suggested actions:

- Perform branch endweight reduction pruning to shorten lengths of extended limbs, reducing load forces acting on the lower trunk fork crack.
- Install arborist cabling per ANSI A300 guidelines.
- Install one or more through-bolt fork braces at the lower trunk area, per ANSI A300 guidelines.

Contact reputable tree care companies for quotes as needed.
4. Grading Daylight Limits: The grading limits appear to have been moved out of the canopy driplines of almost every tree being retained, except for possibly tree \#15 which exhibits a low hanging canopy that extends southward to approximately 30 or 35 feet radius into the grading area, at only 6 feet or so above grade elevation (see images of trees below in this report). WLCA suggests moving the grading daylight limit slightly southward to approximately 5 feet south of where it is currently shown on the grading plan, for the grading area directly south of tree \#15.

2.0 Assignment \& Background

Walter Levison, Consulting Arborist (WLCA) was directed to tag and assess eighteen trees on the proposed 88 Silver Oaks project site, and prepare a formal written arborist report per City of Pleasanton planning division arborist report submittal standards, detailing existing conditions of trees tagged as \#1 through \#18.

These trees are located on a tree map markup with tree protection fence routes indicated as red dashed lines, included below in this report. The sheet used to prepare this tree map is the applicant's grading plan sheet dated 10/21/2015 by Alexander and Associates Inc. Surveyors of Pleasanton, California. The sheet scale and north arrow are both retained on the marked up scan located below in this report.

Per City of Pleasanton report submittal requirements, WLCA has determined appraised dollar values for all of the survey trees, using the $9^{\text {th }}$ edition of Guide for Plant Appraisal and the "trunk formula method" of appraisal value determination. The tree appraisal worksheet is attached to the end of this report.

Tree data charts are attached to the end of the report. Data determined in the Excel tree data charts were collected by WLCA during the $2 / 2 / 2016$ site field assessment. Trees were tagged at eye level using racetrack-shaped aluminum numbered tags. Diameters were determined by using a forester's D -tape which converts circumference to diameter. Tree heights and canopy spread diameters were estimated visually.

Written detailed recommendations for maintenance and protection of the survey trees are included below in this report.
Digital images of the trees are included below in this report as pre-project documentation of existing conditions.

ASCA Registered Consulting Arborist \#401/ ISA Tree Risk Assessment Qualified / ISA Certified Arborist \#WC-3172

3.0 Observations and Discussion

WLCA noted during the field assessment on $2 / 2 / 2016$ that most of the survey trees in the south grove of trees \#1 through \#7 exhibit very significant trunk scars on the lower trunk areas between grade and as much as 10 feet above grade (see images). These scars are located only on the south sides of the trunks, and are assumed to have been caused by cattle foot pressure causing slumping of the erosive soil areas uphill from (south of) the trunks and down over the flaring root crowns, which then resulted in an anaerobic condition that caused root death and/or physical deterioration of the root systems on that uphill (south) side of each trunk. Another theory is that the lower trunk dieback was a result of physical rubbing by cattle bodies on the uphill sides of the trunks as the animals passed by the trees hundreds of times, walking along horizontal contours across the hillslope.

The main concern at this time is oak \#7, which exhibits an active crack at the lower trunk fork (see images below). This tree should probably be removed outright for safety purposes. However, if for some reason it is required to be retained, then the best way to reduce risk of splitout would be to reduce endweight by performing branch reduction pruning to shorten branch lengths and thereby reduce load forces acting on the crack. Mitigation could also include installation of arborist cables and/or through-bolt braces at the crack. Note that there is no way to reduce risk of tree or tree part failure and impact with a target without removing the entire tree.

Fencing appears to be adequate for protection of the trees, assuming that fences are all chain link set on 2 inch diameter iron tube posts and reinforced with silt fence per the author's spec images below in the recommendations section of this report. The only area of grading that might be a problem is the south canopy of oak \#15 where the grading daylight limit appears to encroach slightly into the south end of the canopy. This situation can be remedied by pulling the grading daylight limit southward about 5 additional feet such that there is a 35 foot distance between the trunk edge of oak $\# 15$ and the nearest grading. The oak \#15 canopy hangs down relatively low at about 6 feet above grade elevation, which means that the canopy itself is threatened with breakage damage if grading encroaches within 35 feet of the trunk. Fencing needs to remain in place at the canopy dripline edges of the trees.

The only exception to the canopy dripline root protection zone fence will be situations such as at oak \#9 where fill soil will be built up under the canopy dripline along a zone where an existing asphalt roadway is located (see tree map below).

On a final note, California native blue oaks and valley oaks are relatively very sensitive to construction pressures when compared to average tree species. Per the calculation chart in Trees and Development by Matheny and Clark, this means that the optimal distance for fencing protection and "no dig zones" for mature blue oaks and mature valley oaks in relatively good overall condition is approximately 1.25 feet X trunk diameter inches as a radial distance to maintain fencing from trunk edge. For example: a 30 inch diameter tree would require a radial fence distance of $30 \times 1.25=37.5$ feet radius from trunk edge for optimal long term preservation of the tree in its current condition rating. Most of the trees at this site would require a protection radius of 30 or more linear feet (radius) per this rule. Note that since construction at 88 Silver Oaks is only occurring on one side of the trees in most cases, this root zone protection rule can be significantly adjusted downward, as the 1.25 X (diameter inches) rule assumed that tree root systems would be destroyed in a circular area 360 degrees around the tree, which is not the case at our site. Therefore, root zone radial distances protected with chain link fencing per the WLCA tree map markup in this report are considered to be very good, and should be adequate to allow for tree survival over the long term if the recommendations in the recommendations section of the report are adhered to.

4.0 Tree Location \& Protection Fence Map

5.0 Recommendations

1. PROJECT SITE PLAN ADJUSTEMENTS:

It is suggested that the grading daylight limit be moved approximately five (5) feet southward in the area south of oak \#15, in order to avoid encroaching within the canopy dripline of that tree which appears to extend out as far as 30 or 35 feet radius southward from trunk, and hangs down to approximately 6 feet above grade.

2. PROJECT ARBORIST:

It is suggested that the applicant retain a project arborist ("PA") with the ASCA registered consulting arborist credential, such as WLCA or another professional consultant. The following items may be required to be performed by the project arborist (if applicable):
a. Verification of tree protection and maintenance: The project arborist shall verify in writing that all pre-construction conditions of approval for the project have been met (tree fencing, trunk buffer, temporary irrigation, etc. and are in place. Written verification may or may not need to be approved by the local governing planning department prior to demolition, grading, or building permit issuance.
b. Pre-construction meeting: The construction superintendent and other pertinent personnel are required to meet with the project arborist at the site prior to beginning work to review root pruning protocols, tree protection and maintenance measures, and establish staging areas, supplemental irrigation around trees, etc.
c. Monthly monitoring reports: If required by the local governing authority, the project arborist shall be responsible for visiting the site on at least a once monthly basis throughout the life of the project, during which the status of trees and tree protection measures and maintenance shall be inspected and commented on in a brief letter report sent to the City Arborist via email as per City requirement. During these monthly inspections, the project arborist may probe open soil root zones to test soil moisture percentage which will help in identifying whether trees are receiving too much or too little supplemental irrigation. Arborist will contact site personnel to adjust supplemental watering volumes accordingly.
d. Special Activity Monitoring: Site personnel shall contact the project arborist (PA) in order to facilitate arborist monitoring of portions of the following activities (none required for this project).

PRE-PROJECT ITEMS

3. PRUNING \& MAINTENANCE PRE-PROJECT:

All pruning (if necessary) shall be performed by an ISA Certified Arborist using ANSI A300 pruning standards to perform branch and limb removal, and/or branch and limb reduction pruning (i.e. endweight reduction pruning) on trees being retained to reduce endweight and provide clearance between canopies and proposed work airspace.

The image at above right is a WLCA-representation for reference, showing an ANSI A300-compliant pruning cut sequence used during entire limb removal.

Refer to the tree vendors list in this report.
Specific pruning recommendations: Branch endweight reduction pruning (i.e. "reduction pruning") per ANSI A300 standards, for the laterally-extended canopy areas of oaks \#5, 6, 8, and \#15.
Monitoring:
Call the project arborist 48 hours prior to performing crown raising pruning, branch endweight reduction pruning, and other types of pruning so that the PA can monitor portions of this work at site (if applicable).

Standards:
All pruning cuts shall be in compliance with ANSI A300 Part 1 Tree Shrub and Other Woody Plant Maintenance - Standard Practices, Pruning, and Best Management Practices: Tree Pruning - Companion publication to the ANSI A300 Part Tree Shrub and Other Woody Plant Maintenance - Standard Practices, Pruning (2002. ISA Publications, Champaign, IL. www.isa-arbor.com).

Optional Oak \#7 Maintenance:

If oak \#7 is to be retained, then consider performing some or all of the following:

- Steel support prop installation under horizontally extended limbs.
- Branch endweight reduction pruning to shorten extended branch and limb lengths to reduce load forces acting on the lower trunk fork with active crack.
- Install arborist cable(s) per ANSI A300 standards.
- Install one or more through-bolt brace rods through the fork crack, per ANSI A300 standards.

Root Crown Excavation (RCx):

It is suggested that the buried root crowns not visible for assessment during the author's field visit should be excavated per arborist industry standards: Use small hand tools to gently shovel out the excess soil between trunk edges and two horizontal feet out from trunk edges, to unbury the flaring basal portion of the trunks of oaks \#1, 2, 3, 4, 9, 10, and \#11, until the flare is visible (see image at right from Bartlett Tree Research Labs, Charlotte, NC):

4. TREE REMOVAL:

Consider removing oak \#7 outright for safety purposes.
Consider removing dead standing remnant stump \#17, or retain for wildlife attracting purposes (e.g. woodpecker nesting, etc.).

5. FENCING / TREE PROTECTION (TPZ):

Install chain link fencing, minimum 5 -feet in height, mounted on 2 -inch diameter iron tube posts minimum 7 -feet long pounded 24 -inches into the ground. Horizontal distance between tube posts shall be between 6 and 10 feet on center maximum spread. Optimal post distance is 6 feet on center.

The areas between chain link fencing and tree trunk edges shall be known as the tree protection zones or root protection zones (TPZ or RPZ). No soil disturbances are allowed within these protected zones unless authorized by the local governing authority.

No substances, materials, tools, supplies, liquids, wastes, etc. are to be dumped or stored within the TPZ, even temporarily.

The TPZ fencing must not be moved or altered without the authorization of the Project Arborist.

Fencing shall be completely installed before site plan-related activity commences on site.

Locations: See red dashed lines on tree map mark-up in this report.

Duration of Fencing: Fencing shall remain in place until final signoff inspection of the
 project.

All work in the TPZs shall be performed under direct supervision of the project arborist (i.e. if fencing needs to be temporarily removed).
For added protection of the root zone, use silt fencing dig into the ground per package directions and affixed to the outside of the fence lines, and then pin straw wattles down over the bottom edge of the silt fence using the wood dowels provided with the wattles (see image above on page 8).
*Tree protection fencing may be required to be inspected by the City Arborist and/or Project Arborist prior to issuance of building permits.

SILT FENCING \& STRAW WATTLES TO PREVENT SILT MIGRATION INTO RPZ.

Augment the chain link fence with silt fencing material that is either dug into the ground per package directions along the uphill sides of all RPZ fencing perimeters, or secured down to the ground using a length of straw wattle pinned down with wooden dowels (see image above right), to prevent soil slumping downhill into the RPZ areas, which is a common occurrence on steep sloped sites such as 88 Silver Oaks. Zip-tie the silt fence material to the chain link to keep it upright in good order.
6. SIGNAGE:

Affix Tree Protection Fence signage to the chain link. These signs must be waterproofed, minimum 8×11 size, and affixed approximately once every 25 -linear feet of TPZ fenced distance. The sign should state wordage approximating the following:

ROOT PROTECTION ZONE FENCE ZONA DE PROTECCION PARA ARBOLES

-NO ENTRE SIN PERMISO. LLAME EL ARBOLISTA WALTER LEVISON-

DO NOT MOVE OR REMOVE WITHOUT AUTHORIZATION FROM WALTER LEVISON, PROJECT ARBORIST

CALL OR EMAIL 48-HRS ADVANCE FOR PERMISSION
TELEFONO CELL 415-203-0990 / EMAIL DRTREE@SBCGLOBAL.NET
7. TRUNK BUFFER:

Trunk buffers act as secondary "redundant" tree protection for the above-ground lower trunk areas, in the case that chain link root protection zone fencing (RPZ) is temporarily removed for any reason. The trunk buffer is designed to prevent or mitigate most physical impacts to trunk bark by machinery travel in close proximity to trees.

For all survey trees, wrap the lower area of trunks between grade and approximately 8 feet above grade with a straw wattle, and affix using duct tape and/or orange plastic fencing (see image)*
*If the project will extend into winter 2016-2017, it is suggested that we first wrap the trees with 10 to 20 wraps of orange plastic snow fencing before wrapping the straw wattle around the trunk, in order to create an air gap between the straw wattles and the tree trunk bark to avoid having wet straw pushed against the bark of the trees which could potentially cause disease.

DURING PROJECT ITEMS

8. ARBORIST MONITORING:
(None needed for this project other than initial verification of erection of chain link root protection fences with silt fencing and straw wattle silt barrier protection along the uphill sides of the fences).
9. ROOT SEVERING \& ROOT PRUNING:

Back-digging by hand using small hand tools will be required prior to root severing, if roots measuring 1 inch diameter or larger are encountered during site plan-related work (see images at right).

If roots 1.0 inches diameter or larger are encountered, call the PA immediately so that the PA can direct
 and monitor root pruning activity such that roots are severed at right angles to the direction of root growth using sharp hand tools such as professional grade loppers, hand shears, chain saw, A/C sawzall, or other tools.

Root pruning shall occur only under his/her direct supervision and only after digital images of the roots are archived by the PA and a hand sketch of root locations, depths, sizes is complete (i.e. a "root map").

Woody roots shall not be shattered or broken in any way as a result of site activities. Shattered or broken areas shall be hand-dug back into clear healthy root tissue and severed at right angles to root growth direction under the direct supervision of the project arborist as noted above in this item and as shown in the image on page 10 of this report. This is referred to as "back-digging".

Backfill around roots immediately (same day) or cover each root with 5 to 10 layers of wet, muddy burlap material to avoid root desiccation (see sample photo at right showing roots completely moistened with full-cover wetted burlap, towels, and straw). Keep roots moist until backfilled. Do not compact soil around roots. Backfill using existing parent soil.

10. PRUNING DURING PROJECT:

All "during project" pruning at this site shall be performed by or under direct supervision of an ISA Certified Arborist only, and shall conform to the latest version of "ANSI A300 standard for tree care operations, tree, shrub, and other woody plant maintenance - standard practices (pruning)". See approved vendor list below in this report.

Call the PA prior to commencing pruning, so that the PA can meet with the chosen tree care vendor to determine specific branches and/or limbs to be removed, and specific pruning cut
 locations.

Site Address: 88 Silver Oaks, Pleasanton, CA
© Walter Levison 2015 All Rights Reserved

Do NOT thin, lion-tail, shear, top, pollard, or otherwise perform pruning that is non-compliant with the most current iterations of ANSI-A300 standards for tree care operations.
11. WATER SPRAY:

If standard pressure water is available on site, spray off foliage of all trees being retained on a $1 \times /$ month basis using a high power garden hose to wash both the upper and lower surfaces of the foliage. This helps keep the gas portals (stomata) unclogged for better gas exchange which is crucial for normal tree function (see image at right showing a fire hose being used to wash fifty redwood specimens being retained at a demolition site).
12. TEMPORARY IRRIGATION:

Temporary irrigation of oaks in close proximity to excavation cuts may be required on a once monthly basis. Irrigation water for oaks is best applied at the canopy dripline only, and can be applied against a straw wattle placed along a level contour line along the slope to force irrigation water to percolate downward into the tree root zone more efficiently and minimize runoff/sheet flow.

The project arborist can determine if and when irrigation is warranted at this site.
Acceptable methods of water delivery include water tank truck, tow-behind water tank with sprayer, soaker hose, garden hose, fire hose, and Netafim or equivalent emitter line.

6.0 Author's Qualifications

- Contract Town Arborist, Town of Los Gatos, California Community Development Department / Planning Division 2015-onward
- ISA Qualified Tree Risk Assessor
- ASCA Registered Consulting Arborist \#401
- Millbrae Community Preservation Commission (Tree Board) 2001-2006
- ASCA Arboriculture Consulting Academy graduate, class of 2000
- ISA Certified Arborist \#WC-3172
- B.A. Environmental Studies/Soil and Water Resources UC Santa Cruz, Santa Cruz, California 1990
- Peace Corps Soil and Water Conservation Extension Agent Chiangmai Province, Thailand 1991-1993
- Associate Consulting Arborist Barrie D. Coate and Associates 4/99-8/99
- Contract City Arborist, City of Belmont, California Planning and Community Development Department 5/99-present
- Continued education through attendance of arboriculture lectures and forums sponsored by The American Society of Consulting Arborists, The International Society of Arboriculture (Western Chapter), and various governmental and non-governmental entities.
(My full curriculum vitae is available upon request)

7.0 Assumptions and Limiting Conditions

Any legal description provided to the consultant/appraiser is assumed to be correct. Any titles and ownership to any property are assumed to be good and marketable. No responsibility is assumed for matters legal in character. Any and all property is appraised and evaluated as through free and clean, under responsible ownership and competent management.

It is assumed that any property is not in violation of any applicable codes, ordinance, statutes, or other government regulations.
Care has been taken to obtain all information from reliable sources. All data has been verified insofar as possible; however, the consultant/appraiser can neither guarantee nor be responsible for the accuracy of information provided by others.

The consultant/appraiser shall not be required to give testimony or to attend court by reason of this report unless subsequent contractual arrangements are made, including payment of an additional fee for such services as described in the fee schedule and contract of engagement.

Unless required by law otherwise, the possession of this report or a copy thereof does not imply right of publication or use for any other purpose by any other than the person to whom it is addressed, without the prior expressed written or verbal consent of the consultant/appraiser.

Unless required by law otherwise, neither all nor any part of the contents of this report, nor copy thereof, shall be conveyed by anyone, including the client, to the public through advertising, public relations, news, sales, or other media, without the prior expressed conclusions, identity of the consultant/appraiser, or any reference to any professional society or institute or to any initiated designation conferred upon the consultant/appraiser as stated in his qualifications.

This report and any values expressed herein represent the opinion of the consultant/appraiser, and the consultant's/appraiser's fee is in no way contingent upon the reporting of a specified value, a stipulated result, the occurrence of a subsequent event, nor upon any finding to be reported.

Sketches, drawings, and photographs in this report, being intended for visual aids, are not necessarily to scale and should not be construed as engineering or architectural reports or surveys unless expressed otherwise. The reproduction of any information generated by engineers, architects, or other consultants on any sketches, drawings, or photographs is for the express purpose of coordination and ease of reference only. Inclusion of said information on any drawings or other documents does not constitute a representation by Walter Levison to the sufficiency or accuracy of said information.

Unless expressed otherwise

a. information contained in this report covers only those items that were examined and reflects the conditions of those items at the time of inspection; and
b. the inspection is limited to visual examination of accessible items without dissection, excavation, probing, or coring. There is no warranty or guarantee, expressed or implied, that problems or deficiencies of the plants or property in question may not arise in the future.

Loss or alteration of any part of this report invalidates the entire report.

Arborist Disclosure Statement:

Arborists are tree specialists who use their education, knowledge, training, and experience to examine trees, recommend measures to enhance the beauty and health of trees, and attempt to reduce the risk of living near trees. Clients may choose to accept or disregard the recommendations of the arborist, or to seek additional advice.

Arborists cannot detect every condition that could possibly lead to the structural failure of a tree. Tree are living organisms that fail in ways we do not fully understand. Conditions are often hidden within trees and below ground. Arborist cannot guarantee that a tree will be healthy or safe under all circumstances, or for a specified period of time. Likewise, remedial treatments, like any medicine, cannot be guaranteed.

Treatment, pruning, and removal of trees may involve considerations beyond the scope of the arborist's services such as property boundaries, property ownership, site lines, disputes between neighbors, and other issues. Arborists cannot take such considerations into account unless complete and accurate information is disclosed to the arborist. An arborist should then be expected to reasonably rely upon the completeness and accuracy of the information provided.

Trees can be managed, but they cannot be controlled. To live near trees is to accept some degree of risk. The only way to eliminate all risk associated with trees is to eliminate the trees.

Site Address: 88 Silver Oaks, Pleasanton, CA
4 of 20

Register Member, American Society of Consulting Arborists and Member of the International Society of Arboriculture
© Walter Levison 2015 All Rights Reserved

ASCA Registered Consulting Arborist \#401/ ISA Tree Risk Assessment Qualified / ISA Certified Arborist \#WC-3172

8.0 Certification

I hereby certify that all the statements of fact in this report are true, complete, and correct to the best of my knowledge and belief, and are made in good faith.
Signature of Consultant

9.0 Digital Images

WLCA archived images of survey trees on 2/2/2016

Tree \#	Image	Tree \#	Image
1		2	

ASCA Registered Consulting Arborist \#401/ ISA Tree Risk Assessment Qualified / ISA Certified Arborist \#WC-3172

ASCA Registered Consulting Arborist \#401/ ISA Tree Risk Assessment Qualified / ISA Certified Arborist \#WC-3172

Site Address: 88 Silver Oaks, Pleasanton, CA

ASCA Registered Consulting Arborist \#401/ ISA Tree Risk Assessment Qualified / ISA Certified Arborist \#WC-3172

ASCA Registered Consulting Arborist \#401/ ISA Tree Risk Assessment Qualified / ISA Certified Arborist \#WC-3172

ASCA Registered Consulting Arborist \#401/ ISA Tree Risk Assessment Qualified / ISA Certified Arborist \#WC-3172

10.0 Attached: Appraisal Worksheet
11.0 Attached: Excel Tree Data Charts

Appraisal Worksheet, 88 Silver Oaks, Pleasanton, CA

	Ln 1		Ln 2	Ln 3	Ln 4	Locat	on....		Ln 5	Ln 6	Ln 7	Ln 8	Ln 9	Ln 10	Ln 11	Ln 11.1	Ln 11.2	Line 12	Line 13	Line 14	Line 15
$\begin{aligned} & \text { \# } \\ & \text { む } \\ & \text { it } \end{aligned}$						$\begin{gathered} \text { 』2 } \\ \hline \end{gathered}$									$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{y}{y} \\ & \stackrel{1}{5} \end{aligned}$	$\frac{\stackrel{\pi}{\mathbf{k}}}{\mathbb{~}}$			$\begin{gathered} \stackrel{\rightharpoonup}{5} \\ \stackrel{\rightharpoonup}{\text { ®u }} \\ \hline \end{gathered}$			
1	Ql	31	45\%	22.5	57\%	50\%	30\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	397.41	397.41		395.166	\$ 30,789.07	\$ 7,851.21	\$7,900
2	Ql	31	43\%	multi stem	57\%	50\%	30\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	246.00	246.00		243.76	\$ 19,124.73	\$ 4,660.06	\$4,660
3	Ql	31	67\%	23	60\%	50\%	40\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	415.27	415.27		413.025	\$ 32,164.91	\$ 12,930.29	\$12,900
4	Ql	31	50\%	26.3	60\%	50\%	40\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	542.98	542.98		540.737	\$ 42,003.81	\$ 12,601.14	\$12,600
5	Qd	30	60\%	24.2	60\%	50\%	40\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	459.73	459.73		457.487	\$ 35,590.29	\$ 12,812.50	\$12,800
6	Ql	31	68\%	21	60\%	50\%	40\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	346.19	346.19		343.945	\$ 26,842.98	\$ 10,951.94	\$11,000
7	Ql	31	20\%	$\begin{array}{\|c\|} \hline \text { adj } \\ \text { trunk } \\ \text { area } \\ \hline \end{array}$	25\%	50\%	5\%	20\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	835.00	835.00	835	832.76	\$ 64,501.29	\$ 3,225.06	\$3,230
8	Qd	30	84\%	adj trunk area	63\%	50\%	50\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	900.00	900.00	900	897.76	\$ 69,508.89	\$ 36,978.73	\$37,000
9	Ql	31	78\%	$\begin{array}{\|c\|} \hline \text { adj } \\ \text { trunk } \\ \text { area } \\ \hline \end{array}$	60\%	50\%	40\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	980.00	980.00	980.00	977.76	\$ 75,672.09	\$ 35,414.54	\$35,400
10	Ql	31	79\%	$\begin{array}{\|c\|c\|} \hline \text { adj } \\ \text { trunk } \\ \text { area } \end{array}$	60\%	50\%	40\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	1065.00	1065.00	1065.00	1062.76	\$ 82,220.49	\$ 38,972.51	\$39,000
11	Qd	30	75\%	24.6	60\%	50\%	40\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	475.05	475.05		472.811	\$ 36,770.79	\$ 16,546.85	\$16,500
12	Ql	31	75\%	adj trunk area	58\%	50\%	35\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	925.00	925.00	925.00	922.76	\$ 71,434.89	\$ 31,252.76	\$31,300
13	Q	31	55\%	23	58\%	50\%	35\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	415.27	415.27		413.025	\$ 32,164.91	\$ 10,319.57	\$10,300
14	Ql	31	75\%	23.7	58\%	50\%	35\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	440.93	440.93		438.687	\$ 34,141.88	\$ 14,937.07	\$14,900
15	Ql	31	70\%	multi stem	63\%	50\%	50\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	900.00	900.00		897.76	\$ 69,508.89	\$ 30,815.61	\$30,800
16	Ql	31	40\%	21.8	58\%	50\%	35\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	373.06	373.06		370.823	\$ 28,913.69	\$ 6,746.53	\$6,700
17	Ql	31	0\%	14.4	47\%	50\%	0\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	162.78	162.78		160.538	\$ 12,713.28	\$	\$0
18	Ql	31	70\%	28.2	60\%	50\%	40\%	90\%	2	100\%	2.24	\$172.73	\$172.73	\$345.46	\$77.04	624.26	624.26		622.023	\$ 48,266.14	\$ 20,271.78	\$20,300

Walter Levison
 consulting arborist

Appraisal Worksheet, 88 Silver Oaks, Pleasanton, CA

Appraisal Worksheet, 88 Silver Oaks, Pleasanton, CA

	Ln 1		Ln 2	Ln 3	Ln 4 Location....				Ln 5	Ln 6	Ln 7	Ln 8	Ln 9	Ln 10	Ln 11	Ln 11.1	Ln 11.2	Line 12	Line 13	Line 14	Line 15
$\begin{aligned} & \text { \# } \\ & \text { \# } \\ & \text { di } \end{aligned}$			든 응 0 0 0			$\begin{gathered} \stackrel{y}{\circ} \\ \vdots \end{gathered}$									W 0 0 0 0	$\frac{\mathbb{\pi}}{\mathbb{〔}}$			$\underset{\stackrel{\rightharpoonup}{む}}{\stackrel{\rightharpoonup}{\pi}}$			
Green Book Installation Cost = Cost, averaged out by "Green Book" commi Installed Tree Cost = Sum of two previous lines (replacement + installation).												e, to tran	port from	rsery to	e, pr	le \&	t, stake,	ater,	head, pr	etc..		
Unit Tree Cost = Calculated for each "Group" by "Green Book" committee.																						
(A) TAa $=($ Adjusted $)$ Trunk Area of the Appraised tree. Sum of the cross sectional areas of all trunks that contribute to the canopy in equal percentages.																						
TAa = Trunk Area of the Appraised tree. Calculated directly from the trunk diameter (hence trunk formula method) by the formula: $\mathrm{d} 2 \times 0.785$.																						
ATAa = Adjusted Trunk Area of Appraised tree, if over 30" dbh, adjusted by CTLA formula to compensate for the "rate-of-tree-value increase of a large tree being less than its rate of increase in TA".																						
TAincr = Trunk Area Increase. Arithmetic difference between the Trunk Area of the Appraised tree and the Replacement tree (Line 11 minus Line 6).																						
Note: If calculation for "Trunk Area Increase" yields a negative number (due to small tree size), then next column, "Basic Tree Cost", uses cost to acquire \& plant a smaller specimen from a nursery.																						
Basic Tree Cost = Sum of the Installed Tree Cost plus the quotient derived from multiplying the Unit Tree Cost times the Trunk Area Increase (Ln $12 \mathrm{X} \operatorname{Ln} 10+\operatorname{Ln} 9$)																						
Appraised Value $=$ Calculated by reducing the Basic Tree Cost by the Species, Condition, and Location factors (Ln $13 \times \operatorname{Ln} 5 \times \operatorname{Ln} 2 \times \operatorname{Ln} 4)$																						
Rounded-off Appraised Value = Appraised Value rounded to nearest \$10, if less than \$5000. Else rounding to nearest $\$ 100$, if equal to or more than $\$ 5000$.																						
Note $=$ for existing trees which are still smaller than the typical nursery's 24-inch-box specimen, the smaller nursery specimen's cost has been substituted into the "Basic Tree Cost" cell.																						

								COMMON NAME \& Scientific Name															Notes
1	Yes	22.5					22.5	$\begin{gathered} \text { Valley oak } \\ \text { (Quercus lobata) } \end{gathered}$	$35 / 45$	50140	$\begin{array}{\|l\|l\|} \hline \text { 45\% } \\ \text { Poor } \end{array}$	$\begin{gathered} \text { Poor to } \\ \text { Mod } \end{gathered}$	East			x	x	x	$\left\lvert\, \begin{array}{c\|} \text { to be } \\ \text { determined } \end{array}\right.$	x		0 to 5 ft	Root crown not visible, and not able to be assessed. Suggest root crown excavation. Trunk scar zero to 5 ft .
2	No	13.2	12.1				${ }^{25.3}$	$\begin{gathered}\text { Valley oak } \\ \text { (Quercus lobata) }\end{gathered}$	$30 / 25$	$45 / 40$	$\begin{array}{\|l\|l\|} \hline 43 \% \\ \text { Poor } \end{array}$	Poor to				x	x	x	$\left\|\begin{array}{c\|} \text { to be } \\ \text { determined } \end{array}\right\|$	x		0 to 10 ft .	Root crown not visible, and not able to be assessed. Suggest root crown excavation. Trunk scar zero to 10 ft .
3	Yes	23.0					23.0	$\left.\begin{array}{c}\text { Valley oak } \\ \text { (Quercus lobata) }\end{array}\right)$	40145	${ }^{8060}$	$\begin{gathered} \text { 67\% } \\ \text { Fair } \end{gathered}$	Good	w	w		x	x	x	$\left\|\begin{array}{c\|} \text { to be } \\ \text { determined } \end{array}\right\|$	x		0 to 8 ft .	Root crown not visible, and not able to be assessed. Suggest root crown excavation. Trunk scar zero to 8 ft .
4	Yes	26.3					26.3	Valley oak (Quercus lobata)	50140	60050	$\begin{gathered} \text { 50\% } \\ \text { Fair } \end{gathered}$	$\begin{gathered} \text { Poor to } \\ \text { Mod } \end{gathered}$	NE	NE		x	x	x	$\left\lvert\, \begin{array}{c\|} \text { to be } \\ \text { determined } \end{array}\right.$	x		0 to 5 ft	Root crown not visible, and not able to be assessed. Suggest root crown excavation. Trunk scar zero to 5 ft .
5	Yes	24.2					24.2	$\begin{gathered} \text { Blue oak } \\ \text { (Quercus douglasii) } \end{gathered}$	$35 / 45$	75160	$\begin{array}{\|l\|l\|} \hline 60 \% \\ \text { Fair } \end{array}$	Mod				x	x	x	$\left\lvert\, \begin{array}{c\|} \text { to be } \\ \text { determined } \end{array}\right.$			0 to 5 ft	Trunk scar zero to 5 ft . Tree exhibits an extended canopy form that may require endweight reduction pruning to reduce limb lengths.
6	Yes	21.0					21.0	$\begin{gathered} \text { Valley oak } \\ \text { (Quercus lobata) } \end{gathered}$	$45 / 40$	75/60	$\begin{gathered} \text { 68\% } \\ \text { Fair } \end{gathered}$	Mod				x	x	x	$\begin{array}{\|c\|} \hline \text { to be } \\ \text { determined } \end{array}$				Mistletoe noted in 30 feet. Extended form may require endweight reduction pruning. South stem exhibits extensive decay.
7	Yes	33.1					33.1	$\begin{gathered} \text { Valley oak } \\ \text { (Quercus lobata) } \end{gathered}$	40155	75120	$\begin{aligned} & \text { 20\% } \\ & \text { 监保 } \\ & \text { Poo } \end{aligned}$	Good				x	x	x	$\left\lvert\, \begin{array}{c\|} \text { to be } \\ \text { determined } \end{array}\right.$			Historical trunk splitout at zero to 6 ft \qquad	Tree exhibits twisted branch architecture. Tree will require through-bolt brace installation per ANSI A300 standards at the broken fork that exhibits an active crack (see images), or possibly entire tree removal. Another option may be to reduce endweight by reducing the extension of the south side of canopy to reduce load forces acting on the broken fork area. Through-bolt bracing and endweight reduction pruning combined may still not be enough to make this tree "safe". Author suggests considering removal of the tree.
8	Yes	34.5					34.5	$\begin{gathered} \text { Blue oak } \\ \text { (Quercus douglasii) } \end{gathered}$	$55 / 75$	9075	$\begin{aligned} & 84 \% \\ & \text { Good } \end{aligned}$	Good				x	x	x	$\left\lvert\, \begin{array}{c\|} \text { to be } \\ \text { determined } \end{array}\right.$		$\begin{gathered} \text { Branch } \\ \text { rength } \\ \text { reduction } \\ \text { pruninto to } \\ \text { reduce } \\ \text { endweight } \end{gathered}$		canopy extended in a north-south form.
9	Yes	36.2					36.2	Valley oak (Quercus lobata)	55/55	8075	$\begin{aligned} & \text { 78\% } \\ & \text { Good } \end{aligned}$	Mod to Good	East	East		x	x	x	to be determined	x			Root crown buried. Suggest root crown excavation.
10	Yes	38.1					38.1	Valley oak (Quercus lobata)	$50 / 65$	8075	$\begin{gathered} \text { 79\% } \\ \text { Good } \end{gathered}$	Mod to Good		West		x	x	x	to be determined	x			Root crown buried. Suggest root crown excavation.
11	Yes	24.6					24.6	Blue oak (Quercus douglasii)	50/60	${ }^{8065}$	$\begin{gathered} \text { 75\% } \\ \text { Good } \end{gathered}$	Mod to Good	West	West		x	x	x	to be determined	x			Root crown buried. Suggest root crown excavation.
12	Yes	34.9					34.9	Valley oak (Quercus lobata)	$50 / 50$	8065	$\begin{aligned} & 75 \% \\ & \text { Good } \end{aligned}$	Mod to Good		East		x	x	x	to be determined				Mistletoe noted in canopy.
13	Yes	23.0					23.0	Valley oak (Quercus lobata)	40140	$55 / 55$	$\begin{aligned} & 55 \% \\ & \text { Fair } \end{aligned}$	$\begin{array}{\|l} \text { Poor to } \\ \text { Mod } \end{array}$	East	East		x	x	x	to be determined				Mistletoe noted in canopy.

								COMMON NAME \& Scientific Name						$\begin{aligned} & \text { 焄 } \\ & \text { ت} \\ & \text { E. } \\ & \hline \end{aligned}$									Notes
14	Yes	23.7					23.7	$\begin{gathered} \text { Valley oak } \\ \text { (Quercus lobata) } \end{gathered}$	40135	8070	$\begin{aligned} & \text { 75\% } \\ & \text { Good } \end{aligned}$	Good		$\begin{array}{\|c} \substack{\text { South- } \\ \text { east }} \end{array}$		x	x	x	$\begin{gathered} \text { to be } \\ \text { determined } \end{gathered}$				Mistletoe in canopy. Canopy extends 25 feet southeast toward the proposed work area. Grading limit clears canopy, which is good.
15	Yes	30.2	21.4	20.2			71.8	$\begin{gathered} \text { Valley oak } \\ \text { (Quercus lobata) } \end{gathered}$	$45 / 60$	$75 / 65$	$\begin{array}{\|l\|l\|} \hline 70 \% \\ \text { Good } \end{array}$	Mod				x	x	x	$\begin{gathered} \text { to be } \\ \text { determined } \end{gathered}$		Branch reduction pruning to reduce endweight		Crowded stems fork at 3 feet above grade, with possible high load issues. Canopy extends approx. 35 feet south toward the proposed grading area. Grading limit currently shown at 30 feet south of trunk may have to be slightly pulled back southward 4 or 5 feet to clear the low hanging canopy which hangs down to about 6 feet above grade. Endweight reduction pruning is advised to reduce load forces acting on the crowded mainstem fork.
16	Yes	21.8					21.8	Valley oak (Quercus lobata)	45/25	$40 / 40$	$\begin{aligned} & \text { 40\% } \\ & \text { Poor } \end{aligned}$	Poor	Northwest			x	x	x	to be determined				
17	No	14.4					14.4	$\begin{aligned} & \text { Valley oak } \\ & \text { (Quercus lobata) } \end{aligned}$	$16 / 0$	00	Dead	Dead											(Dead standing mainstem "pole"). Remove tree, or leave as wildlife attractor for woodpeckers, etc.
18	Yes	28.2					28.2	Valley oak (Quercus lobata)	$35 / 45$	${ }^{75 / 65}$	$\begin{aligned} & \text { 70\% } \\ & \text { Good } \end{aligned}$	Mod				x	x	x	$\underset{\substack{\text { to be } \\ \text { determined }}}{\text {. }}$				Canopy extends approx. 25 to 30 feet radius southward toward project area. Grading limits as proposed will clear the canopy dripline on the south side.

DESIGN LEVEL GEOTECHNICAL INVESTIGATION
PLANNED UNIT DEVELOPMENT 116
88 SILVER OAKS COURT PLEASANTON, CALIFORNIA

FOR
MR. FRANK BERLOGAR
February 12, 2016

Berlogar Stevens \& Associates

Mr. Frank Berlogar
88 Silver Oaks Court
Pleasanton, California 94566
Subject: Design Level Geotechnical Investigation
Planned Unit Development 116
88 Silver Oaks Court
Pleasanton, California
Dear Mr. Berlogar:

INTRODUCTION

This report presents our design level geotechnical investigation for 2 proposed single-family residences at Berlogar Ranch in Pleasanton, California (see Plate 1, Vicinity Map). The proposed residences are located at the end of Silver Oaks Court as shown on Plate 2, Site Plan. We previously prepared a Geotechnical Investigation report dated March 30, 2012 for the two parcels located north of the site. We reviewed the Planned Unit Development Grading Plan prepared by Alexander \& Associates Inc. dated October 9, 2015. Based on the plans, the development will consists of two pads of approximate sizes of 24,000 square feet (sf) and 17,500 sf. It is our understanding that the site will require import fill, which will come from the stockpile on the adjacent Tentative Map 10248 site.

PURPOSE AND SCOPE OF SERVICES

The purpose of this geotechnical investigation was to investigate the site soil, bedrock and groundwater conditions and to evaluate the feasibility of the planned development from a geotechnical engineering standpoint. Our scope of services included:

1. Review of published maps and literature pertinent to the site and vicinity.
2. Review of existing geotechnical and geologic reports pertaining to the site.
3. Drill and logging four exploratory borings.
4. Geotechnical engineering and geologic analysis.
5. Providing grading recommendations
6. Preparing of this report.

FIELD EXPLORATION AND LABORATORY TESTING

Our field exploration was performed on January 22, 2016, and consisted of drilling 4 borings between 10 feet and $151 / 2$ feet deep using a truck-mounted CME- 55 drill rig with hollow-stem augers. The approximate boring locations are shown Plate 2, Site Plan. Materials encountered in the borings were sampled, visually classified in the field and logs were recorded. Sampling was
conducted in the borings using a 2.5 -inch I.D. Split Barrel sampler driven by a 140 -pound hammer with a 30 -inch fall. The Boring Logs and the Key to the Boring Logs are presented in Appendices A.

Two soil samples of the proposed import material were collected from the neighboring property and were transported to our laboratory for testing. Laboratory testing included Direct Shear, Atterberg Limits, and hydrometer tests were performed. The results of our laboratory tests are contained in Appendix B.

SITE CONDITIONS

SURFACE CONDITIONS

The proposed development is separated by Rock Spring Road. The road runs through the center of the site in the north-south direction. The development plans call for the road to remain. East of the road there is an existing vineyard located on an approximately 3 Horizontal to 1 Vertical $(3 \mathrm{H}: 1 \mathrm{~V})$ slope. There is some existing fill located in the vineyard area that was placed during vineyard development. The area south of Rock Spring Road was previously graded to an approximate elevation of 510 feet MSL to accommodate barn construction. It is our understanding that the pump house and its respective retaining walls will remain, while the existing barn will be demolished.

SUBSURFACE CONDITIONS

The two borings located on the eastern pad encountered fill. B-1 encountered 6 feet of fill and B-2 encountered 2 feet of fill. Fill material consisted of moist, stiff sandy clay and silty clay. Below the fill in boring B-1 we encountered very dense gravel to a depth of 12 feet. The sandy gravel was underlain by very dense conglomerate. B-2 encountered very stiff clay between 4 and 6 feet. The silty clay was underlain by silty claystone. Borings B-3 and B-4 were located on the western pad. B-3 encountered approximately 1 foot of road base. The road base was underlain by silty claystone. B-4 encountered stiff clays to an approximate depth of 5 feet. The clays were underlain by a two-foot thick layer of medium dense silty sand. Very dense conglomerate was encountered at a depth of 7 feet. The boring logs and a key to the boring logs are presented in Appendix A.

Atterberg limits and direct shear tests were performed on two samples located from the proposed import fill. Atterberg Limits tests resulted in Plastic Indices (PI) of 15 and 11, with Liquid limits of 33 and 25. The Atterberg Limits test results are indicative of soils having a low to moderate expansion potential. Direct shear tests resulted in cohesions of 500 psf and 330 psf , with peak friction angles of 30 degrees and 34 degrees. The direct shear samples were remolded to 92% relative compaction after materials larger than $3 / 8$ " were sieved out. Due to the quantity of larger materials removed from the direct shear samples, it is our opinion that the peak friction angles are likely to be 10° greater than indicated by the laboratory test. The laboratory results are contained in Appendix B.

Groundwater was not encountered in the borings. It is our opinion that groundwater will have a minimal effect of the proposed development.

SLOPE STABILITY

There are two proposed fill slopes within the project, one west of Slope stability analyses were performed using Geo-Slope International Ltd. Slope/W 2007 program using the MorgensternPrice method. The following are the shear strength parameters utilized in the slope stability analyses.

Material	Friction Angle, degrees	Cohesion, psf
Bedrock	35	500
Engineered Fill	30	300

The slope stability analyses were performed on the approximately 45 foot 2 H to 1 V fill slope with a 5 foot high retaining wall for both global and shallow failures. Groundwater should not be present in the fill slopes. Groundwater is anticipated at depths exceeding 15 feet and should water permeate into the engineered fill it will be controlled by the keyways and bench subdrains. The factors of safety obtained for global failure was 2.3 and shallow failure was 1.9.

We also performed the slope stability analyses using a pseudostatic factor. The pseudostatic factor to be applied was determined in accordance with Special Publication 117A, Guidelines for Evaluating and Mitigating Seismic Hazards in California, California Geologic Survey, 2008. A pseudostatic factor, Keq, of 0.30 was determined utilizing the chart for a 5 cm threshold displacement, a magnitude of 6.8 , a distance of 6.4 km from the earthquake, and a 0.60 g maximum horizontal acceleration (PGA from the 2013 CBC). The factors of safety obtained for global failure was 1.3 and shallow Failure was 1.1.

The following table presents a summary of our slope stability analyses:

		Factor of Safety
Static Conditions	Global Failure	2.3
	Shallow Failure	1.9
Pseudostatic Condition	Global Failure	1.3
	Shallow Failure	1.1

LIQUEFACTION

The site is underlain by the Livermore Gravel Formation bedrock. The potential for liquefaction is judged very low for this site.

CONCLUSIONS AND RECOMMENDATIONS

GENERAL

From a geotechnical engineering standpoint, the proposed home sites appear to be feasible at the site, provided the conclusions and recommendations contained in this report are followed as project planning advances.

SITE PREPARATION AND GRADING

Our general site preparation and grading recommendations for proposed redevelopment are as follows:

1. The site should be cleared of existing vegetation.
2. The areas to be grade should be cleared of abandoned utilities and deleterious materials.
3. Existing fill not removed by designed cuts should be completely removed and replaced with engineered fill.
4. If zones of soft or saturated soils are encountered during grading, the area should be over excavated to expose firm soils. This should be determined in the field by the soils engineer or a designated representative of the soils engineer.
5. Keyways should be constructed at the toes of fill slopes. Details for the keyways are presented on Plate 3.

Parcel 1 Fill Slope Keyway	Should be at least 4 feet deep and a minimum of 15 feet wide
Parcel 2 Fill Slope Keyway	Should be at least 6 feet deep and a minimum of 15 feet wide

6. Engineered fill should be moisture conditioned and compacted within the following specifications.

Within 5 feet of Designed Pad Grade	Moisture conditioned to 3 percent above optimum moisture condition and compacted to at least 90 percent of the maximum relative density
Deeper than 5 feet of Designed Pad Grade	Moisture conditioned to 2 percent above optimum moisture condition and compacted to at least 94 percent of the maximum relative density

7. Fill should be properly moisture conditioned and placed in thin lifts (normally 6 to 8 inches depending on the compaction equipment) and compacted as discussed above.
8. Where bedrock is encountered within 3 feet of the designed pad grade in building areas, the bedrock should be overexcavated and replaced with engineered fill.
9. Import fill should contain no deleterious matter and should have a PI less than 15. Fill materials should be subject to the evaluation of the soil engineer prior to their use. Import fill should also be cleared of toxic or hazardous materials prior to importing to the site.
10. Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density determined by ASTM D1557 compaction test procedure. Optimum moisture is the water content (percentage by dry weight) corresponding to the maximum dry density.
11. Observation and soil density tests should be performed during grading to assist the contractor in obtaining the required degree of compaction and proper moisture content. Where the compaction is outside the range required, additional effort and adjustments to the moisture content should be made until the specified compaction and moisture conditioning is achieved.
12. The soils engineer should be notified at least 48 hours prior to any grading operations. The procedure and methods of grading may then be discussed between the contractor and the soils engineer.

SITE GRADING

CALIFORNIA BUILDING CODE (CBC) SEISMIC DESIGN PARAMETERS

The subject is at approximately 37.6591 degrees North latitude and 121.8366 degrees West longitude. The peak ground acceleration (PGA) according to the 2013 CBC is 0.60 g . We are providing the following 2013 California Building Code seismic design criteria using the USGS Seismic Design Maps program, Version 3.1.0 dated July 11, 2013.

Mapped Spectral Acceleration for Short Periods, S_{s}	1.568 g
Mapped Spectral Acceleration for 1-Second Period, S_{1}	0.600 g
Site Class	D
Site Coefficient F_{a} (for Site Class D)	1.0
Site Coefficient F_{V} (for Site Class D)	1.5
Acceleration Parameter S_{MS} (adjusted for Site Class D)	1.568 g
Acceleration Parameter, $\mathrm{S}_{\mathrm{M} 1}$ (adjusted for Site Class D)	0.900 g
Acceleration Parameter, S_{DS} (adjusted for Site Class D)	1.045 g
Acceleration Parameter, $\mathrm{S}_{\mathrm{D} 1}$ (adjusted for Site Class D)	0.600 g

FOUNDATIONS

POST-TENSIONED SLAB FOUNDATIONS

It is our opinion that post-tensioned slab-on-grade foundations can be used to support the proposed residences. We recommend the following preliminary design criteria be incorporated in the design of post-tension slab foundations, utilizing the third edition of the PTI design manual.

Allowable Bearing Capacity (may be increased by 1/3 for seismic and wind loads at the discretion of the structural engineer)	$2,000 \mathrm{psf}$
Passive Equivalent Fluid Pressure (neglect the upper foot if the ground surface is not confined by slabs or pavement)	300 pcf
Base Friction Coefficient	0.27
Edge Moisture Variation Distance Center Lift Edge Lift	9.0 feet
Differential Swell Center Lift Edge Lift	4.5 feet

The upper foot of the subgrade soils should be pre-soaked to at least 5 percent above optimum moisture content prior to constructing the foundations. The pre-soaked pad should not be allowed to dry out to less than the recommended moisture content before concrete is placed. Subgrade moisture should be observed by a BSA representative prior to concrete placement.

RETAINING WALL FOUNDATIONS

For retaining walls supported on continuous strip footings, we recommend that the footings be designed using an allowable bearing pressure of $3,000 \mathrm{psf}$ in native firm materials or fill, provided the footing is embedded a minimum of 8 inches below the lowest adjacent grade for flat terrain and 4 feet embedment for $2 \mathrm{H}: 1 \mathrm{~V}$ sloping grades. The allowable bearing pressure may be increased by one-third for temporary seismic and wind loads at the discretion of the structural engineer.

Passive pressures acting on foundations and keyways may be assumed as 300 pcf provided that the face of the footing or keyway is located at least 10 feet from the face of a slope as measured at the base of the foundation for the lower wall, and that the upper three feet of embedment is disregarded. The friction factor for sliding resistance may be assumed as 0.30 .

RETAINING WALL DESIGN PARAMETERS

It is our understanding that site retaining walls will have a maximum height of 5 feet. The following design parameters should be used for the retaining wall design:

Active Equivalent Fluid Pressure (Level backfill and drained conditions)	40 pcf
Active Equivalent Fluid Pressure (2H:1V backfill and drained conditions)	55 pcf
Surcharge Load	Determined by Structural Engineer

DRY STACK MASONRY WALLS

Dry Stack Masonry (DSM) walls can be supported on footing foundations founded on engineered fill or firm native soils. We recommend that the following geotechnical criteria be incorporated in the retaining wall design:

Allowable bearing capacity (may be increased by $1 / 3$ for seismic and/or wind load)	$3,000 \mathrm{psf}$
Passive equivalent fluid pressure (neglect the upper 1 foot if not confined by pavement or slab and upper 3 feet for sloping ground condition)	300 pcf
Friction coefficient	0.30

The bases of the concrete masonry blocks for DSM walls should be embedded at least 8 inches for level adjacent grade and 4 feet for $2 \mathrm{H}: 1 \mathrm{~V}$ sloping adjacent grade.

CONCRETE FLATWORK

Exterior concrete flatwork, such as sidewalks and patios, can be placed directly on the prepared subgrade. The subgrade should be presoaked to at least 5 percent over optimum moisture content prior to placing concrete. The moisture content of the subgrade soils should be checked immediately prior to the placement of baserock or concrete (if the flatwork is supported directly on the subgrade). Reinforcing steel should be considered to reduce potential tripping hazards caused by expansive soil swell and tree roots. Deep, scored joints spaced no more than 6 feet apart should be considered to control shrinkage cracking.

UTILITY TRENCH EXCAVATION AND BACKFILL

Excavations should conform to applicable State and Federal safety requirements. Where trench excavations are more than 5 feet deep, they should be sloped no steeper than $1 \mathrm{H}: 1 \mathrm{~V}$ and/or shored. Flatter trench slopes may be required if seepage is encountered during construction or if exposed soil conditions differ from those encountered in the borings. If the trench side slopes cannot be excavated due to site constraints, shoring should be provided to ensure trench stability and safety.

Materials quality, placement procedures and compaction operations for utility bedding and shading materials should meet local agency and/or other applicable agency requirements. Utility trench backfill above the shading materials may consist of native soils that have been processed to remove rubble, rock fragments over 4 inches in largest dimension, rubbish, vegetation and other undesirable substances. Backfill materials should be placed in level lifts about 8 to 12 inches in loose thickness, moisture conditioned to at least 3 percent over the optimum moisture content and mechanically compacted to at least percent relative compaction. No jetting is permissible on this project.

Relative compaction refers to the in-place dry density of the soil expressed as a percentage of the maximum dry density determined by ASTM D1557 compaction test procedure. Optimum moisture is the water content (percentage by dry weight) corresponding to the maximum dry density.

ADDITIONAL SOIL ENGINEERING SERVICES

Prior to construction, our firm should be provided the opportunity to review the plans and specifications to determine if the recommendations of this report have been implemented in those documents. We would appreciate the opportunity to meet with the contractors prior to the start of, underground utility installation and pavement construction to discuss the procedures and methods of construction. This can facilitate the performance of the construction operation and minimize possible misunderstanding and construction delays.

To a degree, the performance of the proposed project is dependent on the procedures and quality of the construction. Therefore, we should provide observations of the contractor's procedures and the exposed soil conditions, and field and laboratory testing during site preparation and grading, placement and compaction of fill, underground utility installation, and foundation and pavement construction. These observations will allow us to check the contractor's work for conformance with the intent of our recommendations and to observe any unanticipated soil conditions that could require modification of our recommendations.

LIMITATIONS

The conclusions and recommendations of this geotechnical investigation report are based on the information provided to us regarding the proposed development, subsurface conditions encountered at the test pit locations, laboratory tests and professional judgment. The study has
been conducted in accordance with current professional geotechnical engineering standards; no other warranty is expressed or implied.

The locations of the test pits were estimated by pacing from existing features and should be considered approximate only. The test pits show subsurface conditions encountered at the locations and dates indicated; it is not warranted that they are representative of such conditions at other locations or times.

In the event that changes in nature, design, and location of the proposed development are planned, or if the subsurface conditions differ from those described herein during construction, then the conclusions and recommendations presented in this report should be considered invalid unless the changes are reviewed, and the conclusions and recommendations are modified or approved in writing.

Respectfully submitted,

BERLOGAR STEVENS \& ASSOCIATES

Nicholas Cardanini
Staff Engineer
 GE 2339

NC/FB:jmo

Attachment: Plate 1 - Vicinity Map
Plate 2 - Site Plan
Plate 3 - Keyway Details
Appendix A - Boring Logs and Key to the Boring Logs
Appendix B - Laboratory Test Results
Appendix C - Slope Stability Analyses

Copies: Addressee (3)
U:@@@Publicl1-Pleasanton13769 - PUD 1161100\Design Level GI - PUD 116-28229.doc

VICINITY MAP
 PUD-116
 88 SILVER OAKS COURT
 PLEASANTON, CALIFORNIA
 FOR
 FRANK BERLOGAR

6 FEET DEEP -
PARCEL 2 KEYWAY

KEYWAY DETAILS

APPENDIX A

Boring Logs and Key to the Boring Logs

Job No.: 3769.100	Client: Frank Berlogar	Elevation: 555 feet
Job Name: PUD-116	Drill Method: Hollow-stem Auger	Date Drilled: $1-22-16$

SAMPLER TYPE:	DRIVE WEIGHT (LBS.)	HEIGHT OF FALL (IN.)
2.5-inch I.D. Split Barrel	140	30

Job No.: 3769.100	Client: Frank Berlogar	Elevation: 557 feet
Job Name: PUD-116	Drill Method: Hollow-stem Auger	Date Drilled: 1-22-16

SAMPLER TYPE:	DRIVE WEIGHT (LBS.)	HEIGHT OF FALL (IN.)
2.5-inch I.D. Split Barrel	140	30

Job No.: 3769.100	Client: Frank Berlogar	Elevation: 508 feet
Job Name: PUD-116	Drill Method: Hollow-stem Auger	Date Drilled: 1-22-16

SAMPLER TYPE:	DRIVE WEIGHT (LBS.)	HEIGHT OF FALL (IN.)
2.5-inch I.D. Split Barrel	140	30

Job No.: 3769.100	Client: Frank Berlogar	Elevation: 505 feet
Job Name: PUD-116	Drill Method: Hollow-stem Auger	Date Drilled: $1-22-16$

SAMPLER TYPE:	DRIVE WEIGHT (LBS.)	HEIGHT OF FALL (IN.)
2.5-inch I.D. Split Barrel	140	30

						DESCRIPTION AND REMARKS
-	-	15			$\overline{C L}$	SILTY CLAY, gray-brown, moist, stiff, trace fine-grained sand, large tree roots SANDY CLAY, light gray-brown, moist, stiff, fine-grained sand
-	-	88			SM SP	SILTY SAND, light gray-brown, moist, medium dense, fine-to medium-grained sand, trace fine gravel GRAVELLY SAND, light orange-brown, moist, very dense, fine-to coarsegrained sand, fine-to coarse gravel, trace silt and clay (conglomerate)
-	-		15			Boring terminated at 10 feet No groundwater encountered

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR DIVISIONS			$\begin{aligned} & \text { CLASSIFICATION } \\ & \text { SYMBOL } \end{aligned}$	TYPICAL NAME
COARSE GRAINED SOILS	GRAVELS MORE THAN HALF COARSE FRACTION IS LARGER THAN NO. 4 SIEVE	CLEAN GRAVELS WITH LITTLE TO NO FINES	GW	WELL GRADED GRAVELS, GRAVEL/SAND MIXTURES
			GP	POORLY GRADED GRAVELS, GRAVEL/SAND MIXTURES
		GRAVEL WITH OVER 12\% FINES	GM	SILTY GRAVELS, POORLY GRADED GRAVEL/SAND/SILT MIXTURES
			GC	CLAYEY GRAVELS, POORLY GRADED GRAVEL/SAND/CLAY MIXTURES
MORE THAN HALF OF THE MATERIAL IS LARGER THAN NO. 200 SIEVE	SANDS MORE THAN HALF COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE	CLEAN SANDS WITH LITTLE TO NO FINES	SW	WELL GRADED SANDS, GRAVELLY SANDS
			SP	POORLY GRADED SANDS, GRAVELLY SANDS
		SANDS WITH OVER 12\% FINES	SM	SILTY SANDS, POORLY GRADED SAND/SILT MIXTURES
			SC	CLAYEY SANDS, POORLY GRADED SAND/CLAY MIXTURES
FINE GRAINED SOILS	SILTS AND CLAYS LIQUID LIMIT LESS THAN 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS, OR CLAYEY SILTS WITH SLIGHT PLASTICITY
			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
			OL	ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN HALF OF THE MATERIAL IS SMALLER THAN NO. 200 SIEVE	SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50		MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS
			CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
			OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGHLY ORGANIC SOILS			Pt	PEAT AND OTHER HIGHLY ORGANIC SILTS

KEY TO BORING LOG SYMBOLS

Depth in Feet	Moisture Content $(\%)$	Dry Unit Weight (pcf)	Blows per foot	Unified Soil Classification System	
			Bulk Sample		

APPENDIX \mathbb{B}

Laboratory Test Results

LOCATION	DESCRIPTION
Sample \#1	SILTY SANDY GRAVEL, red-brown
Sample \# 2	CLAYEY SAND, red-brown

GRADATION TEST DATA

APPENDIX C

Slope Stability Analyses

Berlogar Stevens Assoclates

GLOBAL FAILURE

PSEUDOSTATIC CONDITION

${ }^{1.307}$

5' Ret. Wall

Name: Engineered Fill Unit Weight: 130 pcf Cohesion': 300 psf Phi': 30°

Unit Weight: 130 pcf
Cohesion': 500 psf
Phi': 35°

GLOBAL FAILURE

STATIC CONDITION

SHALLOW FAILURE PSEUDOSTATIC CONDITION

- ${ }^{1118}$

SHALLOW FAILURE

STATIC CONDITION

$\underbrace{1.943}$

5' Ret. Wall

