FEHR & PEERS

MEMORANDUM

Date:

February 16, 2016

To:

Greg Thurman, Terrasset Management Group

From:

Kathrin Tellez, Fehr & Peers

Subject:

Workday Pleasanton Campus Transportation Assessment

WC15-3217

This memorandum presents the results of a transportation assessment for the Workday Campus in Pleasanton (project), including project description, analysis and conclusions. The project is entitled to develop up to 430,000 square feet of office uses on the site. Potential transportation impacts of the project were identified in a Transportation Impact Assessment (TIA) prepared for the project by Hexagon Transportation Consultants dated March 14, 2014 (March TIA). The purpose of this assessment is determine if the currently proposed project generates similar levels of vehicle traffic assumed in the March TIA and to review operations of the site access intersections on Stoneridge Mall Road.

PROJECT DESCRIPTION

The project site is located on the northeast side of Stoneridge Mall Road, east of the West Pleasanton BART parking structure, south of Interstate 580 (I-580) and north of existing office development in Pleasanton, as shown on **Figure 1** (all figures are attached at the end of this memorandum). The project is currently vacant and would be developed with an approximately 410,000 square foot office building with the capacity for 2,200 employees. Two parking structures would be constructed as part of the project; one parking structure would be located between I-580 and the proposed office building with shared access from the BART parking structure driveway.

Greg Thurman February 16, 2016 Page 2 of 13

The second parking structure would be located beneath the new office building, with access from the location of an existing driveway on Stoneridge Mall Road. Access to a drop-off/pick-up zone would also be provided from the Workday Driveway. Access to both parking structures would also be provided from Embarcadero Court and the existing parking area circulation. A conceptual project site plan is shown on **Figure 2**.

Fehr & Peers worked with the project team and City staff to identify the necessary off-site improvements to provide site access for all modes of travel. As part of the project, the BART driveway that would be shared with Workday would be relocated, with the resulting intersection signalized. The bus shelter that is currently located on the southeast corner the BART driveway at Stoneridge Mall Road would be relocated to the northeast side of the intersection, improving access to the BART station for bus transit riders. The crosswalk on the south leg of the intersection would be relocated to the north leg, and a pedestrian signal provided across Stoneridge Mall Road and the BART access driveway. A new pedestrian path on west side of Stoneridge Mall Road would be constructed, connecting to the Workday Driveway. A pedestrian bridge connecting to the Workday campus would also be constructed.

The Workday Driveway would be designed to provide full signalized access, with modifications on the west side of Stoneridge Mall Road to channelize traffic and reduce conflict areas within the intersection influence areas and driveway aisles connecting to Stoneridge Mall Road. Crosswalks would also be provided.

ANALYSIS

Operations of the two site access intersections were evaluated during weekday morning (7 to 9 AM) and evening (4 to 6 PM) peak periods to coincide with the time periods when adjacent street traffic demands are greatest and the project generates the most traffic. Existing and cumulative conditions with the project at typical and maximum occupancy were evaluated based on existing traffic counts and cumulative traffic forecasts presented in the March TIA. A supplemental assessment of select off-site intersections reflecting the trip generating potential under maximum occupancy conditions was also conducted.

Greg Thurman February 16, 2016 Page 3 of 13

The operations of roadway facilities for vehicles are typically described with the term level of service (LOS). LOS is a qualitative description of traffic flow based on such factors as speed, travel time, delay, and freedom to maneuver. Six levels are defined from LOS A, representing free flow conditions with minimal delay, to LOS F, representing over-capacity conditions. LOS E represents "at-capacity" operations. Operations are designated as LOS F when volumes exceed capacity, resulting in stop-and-go conditions. **Appendix A** describes the LOS analysis method for vehicles. Pleasanton strives to maintain Level of Service D operations at most intersections, although designated Gateway intersections may be exempt from the LOS D standard.

Project Trip Generation

Trip generation refers to the process of estimating the amount of vehicular traffic a project might add to the local roadway network. In addition to estimates of daily traffic, estimates are also created for the peak one-hour periods during the morning (AM) and evening (PM) commute hours, when traffic volumes on adjacent streets are typically at their highest.

Table 1 shows the estimated trip generation for the project, based on trip generation rates used in the March TIA. As shown in Table 1, the currently contemplated project is expected to generate approximately 3,840 daily trips, with 590 morning and 540 evening peak hour trips. The project as approved and analyzed in the March TIA was estimated to generate slightly more traffic on a daily and peak hour basis that the proposed project.

Although the proposed project is slightly smaller than the approved project, details regarding the potential number of employees within the building were not know at the time the TIA was prepared. Therefore, trip generation per employee was calculated, as presented in **Table 2**, and compared to the trip generation estimates in the March TIA. As shown in Table 2, if the project was fully occupied with the maximum potential number of employees, it could generate more than 330 additional morning and 310 additional evening peak hour trips than considered in the March TIA.

TABLE 1
TRIP GENERATION ESTIMATES PER SQUARE FOOT

Scenario	Size	Daily	A A	M Peak Ho	ur	P	M Peak Ho	ur
Scalino			In	Out	Total	ln	Out	Total
Approved Project	430,000 square feet	3,980	541	74	615	95	465	560
Less 3 percent Transit discount		(120)	(16)	(2)	(18)	(3)	(14)	(17)
Net-Ne	ew Trips	3,860	525	72	597	92	451	543
Proposed Project	410,000 square feet	3,840	521	71	592	91	447	538
Less 3 percent Transit discount		(120)	(16)	(2)	(18)	(3)	(13)	(16)
Net-Ne	ew Trips	3,720	505	69	574	89	433	522
Difference		(140)	(20)	(3)	(23)	(4)	(18)	(22)

Based on *Trip Generation Manual* (9th Edition), Institute of Transportation Engineers (ITE) trip generation rates for Land Use 710, General Office Building
Source: Fehr & Peers, February 2016

TABLE 2
TRIP GENERATION ESTIMATES PER EMPLOYEE

Scenario	Size	Daily	A	M Peak Ho	our	P	M Peak Ho	ur
Scenario		Daily	. In	Out	Total	In	Out	Total
Approved Project	430,000 square feet	3,980	541	74	615	95	465	560
•	cent Transit	(120)	(16)	(2)	(18)	(3)	(14)	(17)

TABLE 2
TRIP GENERATION ESTIMATES PER EMPLOYEE

Scenario	Size	Daily	A	M Peak Ho	XUF	P	M Peak Ho	ur
JCEINGI IO	312	Daily	In	Out	Total	In	Out	Total
Net-N	ew Trips	3,860	525	72	597	92	451	543
Proposed Project	2,200 Employees	5,970	838	114	952	149	725	874
•	cent Transit count	(180)	(25)	(3)	(29)	(4)	(22)	(26)
Net-N	ew Trips	5,790	813	111	924	145	704	848
Difference		1,930	288	39	327	53	252	305

Based on Trip Generation Manual (9th Edition), Institute of Transportation Engineers (ITE) trip generation rates for Land Use 710, General Office Building, per square feet and per employee.
 Source: Fehr & Peers, February 2016

The trip generation estimates shown in Tables 1 and 2 consider a 3 percent transit reduction for proximity to the West Pleasanton BART station. It is likely that the actual transit mode share would be higher due to proximity to BART, but the 3 percent reduction was assumed for consistency with the March TIA.

If the proposed project reaches maximum occupancy levels, it could affect operations of off-site intersection to a greater extent than previously identified, especially those in close proximity to the project or those operating near capacity. Therefore, a supplemental analysis was conducted for intersections in close proximity to the project site, or those projected to operate at Level of Service D or worse, as identified in the March TIA.

A more focused assessment, including a queuing analysis, was conducted for the two project access intersections to inform site access design.

Greg Thurman February 16, 2016 Page 6 of 13

Project Trip Distribution and Assignment - Site Access Intersections

Project trip distribution refers to the directions of approach and departure that vehicles would access the site. Based on the parameters presented in the March TIA, vehicle trips that are expected to be generated by the proposed project as shown in Tables 1 and 2 were added to the existing traffic volumes at the following two intersections, as shown on **Figure 3**:

- Stoneridge Mall Road/Shared BART and Workday Driveway
- Stoneridge Mall Road/Workday Driveway

Buildout traffic forecasts contained in the March TIA were used as the basis to estimate future traffic volumes at the study intersections with the project. The Cumulative without Project forecasts contained in the March TIA were adjusted as they reflect development on the site consistent with the General Plan at the time the analysis was conducted. The traffic expected to be generated from these uses was subtracted from the base forecasts to develop Cumulative without Project forecasts as shown on **Figure 4**. Project traffic under typical (Table 1) and maximum occupancy (Table 2) conditions were then added to develop Cumulative with Project forecasts, as shown on Figure 4.

Intersection Operations - Site Access Intersections

Site access intersection operations were evaluated using the methods outlined in Attachment A for the weekday AM and PM peak hours based on the volumes presented on Figures 3 and 4 with the results presented in **Table 3** for the Existing condition and **Table 4** for the Cumulative condition. Consistent with the March TIA, signalization of the BART driveway on Stoneridge Mall Road was assumed. Separate left and right-turn exit lanes from the driveway to Stoneridge Mall Road were also assumed. Preliminary site plans included additional lane capacity on the shared BART/Workday Driveway; results of earlier analyses indicated that the additional roadway capacity was not necessary to serve vehicle demand and the cross-sections were narrowed to reduce pedestrian crossing distances at intersections and better balance the needs of all roadway users. The analysis results consider the construction of a pedestrian bridge connecting the Workday Campus. Should this pedestrian bridge not be constructed, there is an increased potential for

Greg Thurman February 16, 2016 Page 7 of 13

vehicle/pedestrian conflicts on the shared BART/Workday Driveway that could affect the analysis results. Level of service and vehicle queue worksheets are provided in **Attachment B**.

Operations of the Workday Driveway were initially evaluated assuming the current side-street stop-control under existing and cumulative conditions. Preliminary operations analysis indicated that the northbound vehicle queue at the shared BART driveway intersection could periodically spillback and block the Workday Driveway, and vehicles making the left-turn movement from the Workday Driveway to Stoneridge Mall Road could experience poor operations during the weekday PM peak hour; similar to the conclusions of the March TIA, peak hour signal warrants would be satisfied at the intersection. Based on these considerations, the analysis was then conducted assuming that the Workday Driveway was signalized and operated as a single intersection with the shared BART/Workday driveway given the close intersection spacing of approximately 225 feet. This presents a worst case assessment of intersection operations and vehicle queues.

As shown in Tables 3 and 4, the resulting intersections are projected to operate acceptably with traffic signal installation. Although the intersections are projected to operate at acceptable levels, they do not operate as efficiently as a standalone intersection resulting in potential vehicle queue spillback as vehicles enter the combined intersection influence area, particularly the southbound left-turn from Stoneridge Mall Road to the shared BART driveway, and from the northbound through movement at the Workday Driveway.

TABLE 3 EXISTING CONDITIONS INTERSECTION LEVEL OF SERVICE RESULTS

	Intersection	Peak Hour		j (from h TIA)	Existing Pl Occup (signa	pancy	Existin Maxi Occuj (signa	mum sancy
			Delay ¹	LOS ²	Delay ¹	LOS ²	Delay ¹	LOS ³
1.	Shared BART Driveway at	AM	1 (13)	A (B)	16	В	19	В
	Stoneridge Mall Road	PM	3(24)	A (C)	20	В	23	C
2,	Workday Driveway at	AM	2 (13)	A (B)	24	С	26	C
	Stoneridge Mall Road	PM	4 (19)	A (C)	26	Ç	28	C

Notes:

- Delay presented in seconds per vehicle; delay presented as intersection average (worst approach) for unsignalized intersections and as the intersection average for signalized intersections.
- 2. LOS = Level of Service.

Source: Fehr & Peers, February 2016.

TABLE 4 CUMULATIVE CONDITIONS INTERSECTION LEVEL OF SERVICE RESULTS

	Intersection	Peak Hour	Cumula Project (fr TL	om March	Cumulat Typical O (signa	ccupancy	Cumulative Plus Maximum Occupancy (signalized)	
			Delay ¹	LOS ²	Delay ¹	LOS²	Delay ¹	LOS ³
1.	Shared BART Driveway at	АМ	6	Α	15	В	19	В
	Stoneridge Mall Road	PM	8	Α	21	C	24	C
2.	Workday Driveway at	AM	6 (36)	A (E)	26	С	28	С
	Stoneridge Mall Road	PM	7 (39)	A (E)	25	C	28	C

Notes:

- Delay presented in seconds per vehicle; delay presented as intersection average (worst approach) for unsignalized intersections and as the intersection average for signalized intersections.
- 2. LOS = Level of Service.

Source: Fehr & Peers, February 2016.

Greg Thurman February 16, 2016 Page 9 of 13

Stoneridge Mall Road Queue Assessment

The 50th and 95th percentile vehicle queues were estimated using Synchro 8.0 for the southbound left-turn movement from Stoneridge Mall Road to the shared BART driveway, and for the northbound through movement at the Workday Driveway. Results of this assessment indicate that in the cumulative condition during the morning peak hour, average vehicle queues for the southbound left-turn are expected to range between 190 (typical occupancy) and 290 (maximum occupancy) feet and 95th percentile queues are expect to range between 260 (typical occupancy) and 390 feet (maximum occupancy).

The proposed design provides approximately 350 feet of vehicle storage for the southbound left-turn movement, which would generally accommodate the expected vehicle queues, although there may be 1 to 2 times during the morning peak hour when vehicle queues could spillback to the adjacent travel lane if the Workday building is fully occupied. Extending the turn pocket is not feasible as it would restrict access to an adjacent parcel, and providing a dual left-turn lane is not recommended due to lane utilization issues as vehicles position themselves to access either the BART garage or the Workday garage. Vehicles queues could be managed through signal timing, including signal phasing options that could extend the left-turn green time when vehicle queues reach a certain length, as measured by the vehicle detection system, or could serve the left-turn phase twice during some cycles in the morning peak hour.

The amount of green-time required to serve the BART/Workday Driveway southbound left-turn movement results in some vehicle queue buildup for the northbound through movement at the Workday Driveway. However, the 95th percentile vehicle queue under maximum occupancy conditions is not projected to extend past Embarcadero Court. Vehicle queues are expected to be contained within the available vehicle storage for the other travel movements during the remaining analysis time periods.

The southbound left-turn vehicle queue into the Workday Driveway is expected to be maintained within the available vehicle storage. Southbound/northbound through movement queues are not expected to form between the shared BART and Workday Driveway intersections as the traffic

Greg Thurman February 16, 2016 Page 10 of 13

signal would be timed to provide a clearance interval to prevent vehicle queues forming between the intersections.

BART/Workday Driveway Queue Assessment

The potential for vehicle queues to form along the BART/Workday shared driveway, extending to Stoneridge Mall Road was assessed. For vehicles entering the BART garage from the shared driveway, vehicle queues are not expected to form as the conflicting through movement is proposed to be stop controlled. Also, during the times of day when inbound activity to the garage is highest (morning peak hour), there would be minimal outbound activity to conflict with the inbound movements. The BART garage driveway is also being designed to allow the installation of a controlled pedestrian/bicycle crossing, if necessary, to reduce conflicts between vehicles and pedestrians/bicyclists. This would reduce the potential for platoons of bicyclists/pedestrians to impede vehicular travel into the garage, and provide a protected crossing for bicyclists and pedestrians, if actual conditions warrant.

Vehicle queues at the Workday garage entry were estimated by Watry Design, Inc. based on the service rate of the proposed garage entry gate system. Based on the typical day trip generation (Table 1) and a service rate of 600 vehicles per hour with two access lanes, average vehicle queues are expected to be less than one vehicle, and the maximum vehicle queue expected to form at the parking garage access is 2 vehicles. With maximum occupancy conditions (Table 2), average vehicle queues are expected to be less than two vehicles, with a maximum queue of five vehicles. As there is capacity for approximately ten vehicles to queue prior to the BART garage entrance, vehicle queues that could form at the Workday garage entrance are not expected to impede access to the BART garage, and are not expected to spillback to Stoneridge Mall Road.

Based on the shared driveway queueing assessment, vehicle queues from either the BART or Workday garage entrances are not expected to spillback to Stoneridge Mall Road.

Off-Site Intersection Operations

Operations of off-site intersections that were projected to operate at LOS D or worse in the March TIA, or intersections where project traffic would be concentrated were analyzed under maximum occupancy trip generation conditions. Analyzed intersections include:

Greg Thurman February 16, 2016 Page 11 of 13

- Foothill Road at Canyon Way/Dublin Canyon Road (intersection 3)
- Foothill Road at Stoneridge Drive (intersection 4)
- Stoneridge Mall Road at Embarcadero Court (intersection 8)
- Stoneridge Mall Road at Stoneridge Drive (intersection 10)
- Stoneridge Drive at Interstate 680 Northbound Ramps (intersection 12)
- Stoneridge Drive at Johnson Drive (intersection 13)
- Hopyard Road at Stoneridge Drive (intersection 14)
- San Ramon Road at Dublin Boulevard (intersection 15)

For this assessment, the incremental difference in vehicle trips analyzed in the March 2014 and the trip generation estimates under maximum occupancy (Table 2) were added to the forecasts presented in the March TIA for the following scenarios:

- Existing Plus Project
- Existing Plus Approved Plus Project
- Cumulative Buildout Plus Project

Intersection levels of service were evaluated using the same methods as the March TIA, as presented in **Table 5.** The City's Synchro networks were used to conduct the analysis, with traffic signal timings optimized for the future year analyses. Although the addition of the incremental trip generation under maximum occupancy conditions (Table 2) would increase vehicle delay at some intersections, the additional traffic would not degrade intersections projected to operate at LOS D or better to LOS E or F.

The intersection of Foothill Road at Canyon Way/Dublin Canyon Road was projected to operate at LOS E in the March TIA. With the addition of traffic under maximum occupancy conditions, the intersection is projected to continue operating at level of service E. This intersection is a designated gateway intersection, and is not required to maintain level of service D. Additionally, there are planned improvements at this intersection that the project would contribute to through the payment of the City's transportation impact fee.

Based on the result of the intersection analysis under maximum occupancy conditions, the overall conclusions presented in the March TIA do not change.

INTERSECTION LEVEL OF SERVICE RESULTS **TABLE 5**

1. Foothill Road at Canyon Way/Dublin 2. Foothill Road at Stoneridge Mall Road at Stoneridge Drive 3. Stoneridge Mall Road at Stoneridge Drive at Johnson Drive 3. Stoneridge Drive at Johnson Drive 4. Stoneridge Drive at Johnson Drive 5. Stoneridge Drive at Johnson Drive 5. Stoneridge Drive at Johnson Drive 6. Staneridge Drive at Johnson Drive 7. Hopyard Road at Stoneridge Drive 8. San Ramon Road at Dublin 8. San Ramon Road at Stoneridge Drive 8. San Ramon Road at Dublin 8. San Ramon Road at Stoneridge Drive 8. San Ramon Road Stoneridge Drive 8.	250	Intersection	Pesk	Existing with Project (from March TJA)	(from	Existing with Maximum Occupancy	g with num sancy	EPAP with Project (from March TIA)	from (AT	EPAP with Maximum Occupancy	with mum ency	Cumulative with Project (from March TIA)	March Narch	Cumulative with Maximum Occupancy	artive admum ency
Foothill Road at Canyon Way/Dublin AM 27 C 34 C 40 D 44 D 36 P3 36 Canyon Road Canyon Road AM 19 8 20 8 24 C 25 C 40 D 46 Stoneridge Mall Road at Stoneridge AM 19 8 25 C 25 C 25 C 29 C 39 C 39 <th>MAIN CO.</th> <th></th> <th></th> <th>Delay</th> <th>1052</th> <th>Delay</th> <th>,507</th> <th>Delay</th> <th>.S01</th> <th>Delay</th> <th>100s</th> <th>Delay¹</th> <th>Control of</th> <th>Delay</th> <th>F001</th>	MAIN CO.			Delay	1052	Delay	,507	Delay	.S01	Delay	100s	Delay ¹	Control of	Delay	F001
Stoneridge Mall Road at Stoneridge Drive AM 19 8 20 6 45 C 25 C 49 C 25 C 49 C 29 C 29 C 29 C 29 C 25 C 25 C 23 C 29 C 25 C 23 C	ند		P A	27 58	UШ	34 61	ОM	40 72	□ 	44 76	0 🖷	36 67	E E	36	ጐጔ
Stoneridge Mall Road at Loubling BM AM 19 8 25 C 24 C 24 C 26 C 24 C 26 C 23 C	oi.		P A	19	a O	20	6 U	24	υΔ	25	٥	40	۵ ۷	46 29	٥٥
Stoneridge Mall Road at Stoneridge PMI Road at Stoneridge Mall Road at Stoneridge Mall Road at Stoneridge Drive AM 17 8 17 8 40 D 41 D 41 B 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11	~	Stoneridge Mall Road at Embarcadero Court	P A	19 24	a U	34	υυ	22 26	υυ	34	υυ	21 23	υυ	30	υυ
Stoneridge Drive at Interstate 680 AM 14 8 18 8 18 8 18 8 18 18 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 11	:	Stoneridge Mall Road at Stoneridge Drive	P A	8	×α	9	∢ ∞	10	4 Q	11	8 0	11 24	6 U	12 24	B U
Stoneridge Drive at Johnson Drive AM 19 8 19 8 15 8 15 8 17 8 17 Hopyard Road at Stoneridge Drive AM 29 C 34 C 34 C 32 C 36 San Ramon Road at Dublin AM 34 C 40 D 32 C 41 D 32 C 36 Boulevard PM 37 D 39 D 38 D 38 D 51 D 41			AM M	14	80 80	18	60 60	18	20 20	18	80 80	21	Uю	21	Uω
Hopyard Road at Stoneridge Drive AM 29 C 34 C 30 C 34 C 36 San Ramon Road at Dublin AM 34 C 40 D 32 C 41 D 52 D 52 Boulevard PM 37 D 39 D 38 D 51 D 38 D 41			P. A.	19	B U	19 30	ຜ U	15 23	a (15 30	B ()	17 23	# U	17 30	& U
San Ramon Road at Dublin AM 34 C 40 D 32 C 51 D 32 C 51 D 34 D 41 Boulevard PM 37 D 39 D 38 D 51 D 38 D 41			AM PM	29 35	υυ	34	۵۷	30 41	υΔ	34	٥	32	υQ	36	۵۵
		San Ramon Road at Dublin Boulevard	AM PM	34	υD	39	0	32	٥	41	۵۵	32	υa	51 41	۵۵

Notes:

Delay presented in seconds per vehicle based on 2000 HCM.
 LOS = Level of Service.
 Reflects construction of a third southbound left-turn lane and associated receiving lanes.
 Source: Fehr & Peers, February 2016.

Greg Thurman February 16, 2016 Page 13 of 13 p

Other Considerations

A drop-off/pick-up zone is proposed with full access from the Workday Driveway. Approximately 5 parking spaces would be provided in this area, as well as capacity of 3 to 4 vehicles in the drop-off zone. Heavy use on a daily basis is not expected and all deliveries would need to occur through the service area.

CONCLUSIONS

Results of this assessment indicate that on a typical day, the currently proposed Workday project would generate less traffic than the project analyzed in the March TIA; however, under maximum occupancy conditions, the level of trip generation could be higher. A supplemental analysis considering the additional vehicle trip generation indicates that the overall conclusions of the March TIA remain valid.

Results of the site access intersection operational analysis indicates that level of service C or better operations can be maintained at both intersections if signalized and operated with a single traffic controller to minimize vehicle queue spillback between the intersections. However, there may be some periods when vehicle queues at the shared BART driveway impede left-turn access to an adjacent driveway. These queues can be managed through signal operations.

This completes our site access assessment for the Workday development in Pleasanton. Please call Kathrin at 925-930-7100 if you have questions.

Attachments:

Figure 1 Site Vicinity

Figure 2 Conceptual Project Site Plan

Figure 3 Existing and Exiting Plus Project (Typical and Maximum Occupancy) Weekday AM

and PM Peak Hour Intersection Turning Movement Volumes

Figure 4 Cumulative and Cumulative Plus Project (Typical and Maximum Occupancy)

Weekday AM and PM Peak Hour Intersection Turning Movement Volumes

Attachment A Level of Service Analysis Methods

Attachment B Level of Service and Queue Worksheets

M/A Project Site

Study Intersection

_		
1. Stoneridge Mall Rd/BART Garage	20 (74)	(51) 61 (52) 805 (82) 57
1. Stoneridge Mall	(5 (3) (22) 74 (52) 74	0 (6) 0 (1)

J/Workday Driveway	11 (140) 	(82) E1 (723) F14 (6) E8
2. Stoneridge Mall Rd/Workday Driveway	(1) S (285) 962 (41) 181 (41) 181	0 (4) 4 (35)

-
U
a
0
\supset
Ü
Ü
ŏ.
~
=
O
Ü
Ω
-
-
Ė
•
V)
$\overline{}$
\supset
$\overline{}$
Δ.
_
_
0
Ċ
-
الصل
S
\times
111

Stoneridge Mall Rd/BART/Workday	46 (235) 40 (187) 213 (714) 213 (714)
1. Stoneridge Mall F	245 (313) √- 545 (313) √- 545 (313)

2. Stoneridge Mall Rd/Workday Driveway	24 (220) 0 (1) 13 (106)	35 (46) 95 (52) 958 (18) 951
2. Stoneridge Mall R	(A) OS (A)	0 (11) 0 (0) 5 (41)

Occupancy	2. Stoneridge Mail F
Existing Plus Maximum Occupancy	1. Stoneridge Mall Rd/BART/Workday

Vorkday	559)
IN RUBARTA	351 (768) — 52 (259) 245 (269) 252 (259) — 251 (259) 252 (259) — 252 (259) — 253 (259) — 2
1. Stoneridge Mall Rd/BART/Workday	%— 606 (325) %— 606 (325)

(Workday Driveway	31 (269) = 0 (1) = 20 (147)	(86) SC (920) F18 (75) 881
2. Stoneridge Mall Rd/Workday Driveway	(4) 000 (41) (20 (41) (12) 000 (41)	

CONTRACTOR	Study Intersection
Lightnon or the state of the st	Project Site #
S S S S S S S S S S S S S S S S S S S	AM (PM) Peak Hour Traffic Volumes
and the state of t	20
Range Ball	XX (YY)
Tool x3 E 1156-21-00	LEG

Existing and Existing Plus Project Peak Hour Intersection Traffic Volumes

Cumulative No Build

2. Stoneridge Mall Rd/Workday Driveway

Rd/BART Garage	30 (80) = 5 (5) = 30 (80)	(SES) 12C (OC) 08
1. Stoneridge Mall Rd/BART Garage	15 (5) 15 (5) 15 (5)	1 1 1 000 000 000

20 (140) 0 (5) 10 (50)

100 (SO) See (436)

0 (5) \$ (35)	
(21) 61 (36) 150 (30) 08	
11 999 000 000	

13 (25) 451 (443) 70 (10)

Cumulative Plus Typical Occupancy

d/BART/Workday	286 (63) 1
1. Stoneridge Mall Rd/BART/Morkday	(C9) 9EZ _# (18C) 0ZS →

Stoneridge Mall Rd/Workday Driveway	33 (220) 0 (5) 0 (15) 0 (115)	32 (37) ====================================
2. Stoneridge Mall R	(28) 252 (29) 250 (29	0 (16) 0 (0) 10 (40)

Cumulative Plus Maximum Occupancy

1. Stoneridge Mall Rd/BART/Workday	34 (692)

2. Stoneridge Malf Rd/Workday Driveway	4 40 (269) 4 0 (5) 27 (156)	35 (35) ====================================
2. Stoneridge Malf R	(5) 02 (5) 05 (609) 515 (6	0 (16) 0 (0) 10 (40)

DUBLIN	N S SAN HE ON	# Study Intersection
		Project Site
		raffic Volumes
		AM (PM) Peak Hour Traffic Volumes
Armbol photo Ro	B	Stanferidge Mall Motocool 7

Figure 4

Cumulative and Cumulative Plus Project Peak Hour Intersection Traffic Volumes

ATTACHMENT A - INTERSECTION ANALYSIS METHODS

The operations of roadway facilities are for vehicles described with the term "level of service" (LOS). LOS is a qualitative description of traffic flow based on factors such as speed, travel time, delay, and freedom to maneuver. Six levels of service are defined ranging from LOS A (i.e., freeflow operating conditions) to LOS F (over capacity operating conditions). LOS E corresponds to operations "at capacity." When volumes exceed capacity, stop-and-go conditions result and operations are designated as LOS F. The City of Pleasanton strives to provide LOS D or better on a peak hour basis.

Signalized Intersections

Traffic conditions at signalized intersections were evaluated using the method from Chapter 16 of the Transportation Research Board's 2000 *Highway Capacity Manual*. This operations analysis method uses various intersection characteristics (such as traffic volumes, lane geometry, and signal phasing) to estimate the average control delay experienced by motorists traveling through an intersection. Control delay incorporates delay associated with deceleration, acceleration, stopping, and moving up in the queue. **Table A-1** summarizes the relationship between average delay per vehicle and LOS for signalized intersections.

Unsignalized Intersections

Traffic conditions at unsignalized intersections were evaluated using the method from Chapter 17 of the 2000 *Highway Capacity Manual*. With this method, operations are defined by the average control delay per vehicle (measured in seconds) for each movement that must yield the right-of-way. At two-way or side street-controlled intersections, the control delay (and LOS) is calculated for each controlled movement, as well as the left-turn movement from the major street, and the entire intersection. For controlled approaches composed of a single lane, the control delay is computed as the average of all movements in that lane. The delays for the entire intersection and for the movement or approach with the highest delay are reported. **Table A-2** summarizes the relationship between delay and LOS for unsignalized intersections.

TABLE A-1
SIGNALIZED INTERSECTION LOS CRITERIA

Level of Service	Description	Average Control Delay Per Vehicle (Seconds)
Α	Operations with very low delay occurring with favorable progression and/or short cycle lengths.	≤ 10. 0
В	Operations with low delay occurring with good progression and/or short cycle lengths.	> 10. 0 to 20. 0
С	Operations with average delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures begin to appear.	> 20. 0 to 35. 0
D	Operations with longer delays due to a combination of unfavorable progression, long cycle lengths, and/or high volume-to-capacity (V/C) ratios. Many vehicles stop and individual cycle failures are noticeable.	> 35. 0 to 55. 0
E	Operations with long delays indicating poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences.	> 55. 0 to 80. 0
F	Operations with delays unacceptable to most drivers occurring due to over saturation, poor progression, or very long cycle lengths.	> 80. 0

Source: Highway Capacity Manual (Transportation Research Board, 2000).

TABLE A-2
UNSIGNALIZED INTERSECTION LOS CRITERIA

Level of Service	Description	Average Control Delay Per Vehicle (Seconds)
A	Little or no delays	≤ 10. 0
В	Short traffic delays	> 10. 0 to 15. 0
С	Average traffic delays	> 15. 0 to 25. 0
D	Long traffic delays	> 25. 0 to 35. 0
E	Very long traffic delays	> 35. 0 to 50. 0
F	Extreme traffic delays with intersection capacity exceeded	> 50. 0

Source: Highway Capacity Manual (Transportation Research Board, 2000)

ATTACHMENT B – LEVEL OF SERVICE AND QUEUE WORKSHEETS

	\rightarrow	1	4-		†	1	↓	
Lane Group	EBT	WBL	WBT	NBL	NBT	SBL	SBT	5 196 - 15 5 T
Lane Group Flow (vph)	6	14	27	36	741	271	380	
v/c Ratio	0.01	0.15	0.04	0.35	0.47	0.78	0.15	
Control Delay	0.0	57.5	0.1	75.6	18.6	65.8	1.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	1.0	0.1	
Total Delay	0.0	57.5	0.1	75.6	18.6	66.9	1.8	
Queue Length 50th (ft)	0	11	0	29	123	185	10	
Queue Length 95th (ft)	0	33	0	m65	331	181	13	
Internal Link Dist (ft)	204		679		462		237	
Turn Bay Length (ft)				100		90		
Base Capacity (vph)	764	105	729	108	1587	455	2595	
Starvation Cap Reductn	0	0	0	0	0	55	945	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.01	0.13	0.04	0.33	0.47	0.68	0.23	
intersection Summary	6	400		11/21	300			

m Volume for 95th percentile queue is metered by upstream signal.

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SQL Lane Configurations 4 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0<	\$BT \$BF \$12 20 1900 1900 4.1 0.95 0.99 1.00 3625 1.00 3625 0.90 0.90 358 22 3 0 377 0
Lane Configurations ♣ ħ 1000 1000 100	322 20 1900 1900 4.1 0.95 0.99 1.00 3625 1.00 3625 0.90 0.90 358 22 3 0 377
Ideal Flow (vphpl) 1900 <td>1900 1900 4.1 0.95 0.99 1.00 3625 1.00 3625 0.90 0.90 358 22 3 0 377</td>	1900 1900 4.1 0.95 0.99 1.00 3625 1.00 3625 0.90 0.90 358 22 3 0 377
Total Lost time (s) 4.1	4.1 0.95 0.99 1.00 3625 1.00 3625 0.90 0.90 358 22 3 0 377 0
Lane Util. Factor 1.00 1.00 1.00 1.00 0.95 1.00 Frt 0.86 1.00 0.85 1.00 0.97 1.00 Flt Protected 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (prot) 1665 1829 1636 1829 3543 1829 Flt Permitted 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (perm) 1665 1829 1636 1829 3543 1829 Peak-hour factor, PHF 0.90	4.1 0.95 0.99 1.00 3625 1.00 3625 0.90 0.90 358 22 3 0 377 0
Frt 0.86 1.00 0.85 1.00 0.97 1.00 Flt Protected 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (prot) 1665 1829 1636 1829 3543 1829 Flt Permitted 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (perm) 1665 1829 1636 1829 3543 1829 Peak-hour factor, PHF 0.90 <t< td=""><td>0.99 1.00 3625 1.00 3625 0.90 0.90 358 22 3 0 377 0</td></t<>	0.99 1.00 3625 1.00 3625 0.90 0.90 358 22 3 0 377 0
Fit Protected 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (prot) 1665 1829 1636 1829 3543 1829 Fit Permitted 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (perm) 1665 1829 1636 1829 3543 1829 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 0 0 6 14 0 27 36 587 154 271 RTOR Reduction (vph) 0 5 0 0 26 0 0 16 0	1.00 3625 1.00 3625 0.90 0.90 358 22 3 0 377 0
Satd. Flow (prot) 1665 1829 1636 1829 3543 1829 Flt Permitted 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (perm) 1665 1829 1636 1829 3543 1829 Peak-hour factor, PHF 0.90	3625 1.00 3625 0.90 0.90 358 22 3 0 377 0
Fit Permitted 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (perm) 1665 1829 1636 1829 3543 1829 Peak-hour factor, PHF 0.90	1.00 3625 0.90 0.90 358 22 3 0 377 0
Satd. Flow (perm) 1665 1829 1636 1829 3543 1829 Peak-hour factor, PHF 0.90	3625 0.90 0.90 358 22 3 0 377 0
Peak-hour factor, PHF 0.90	0.90 0.90 358 22 3 (377 (
Adj. Flow (vph) 0 0 6 14 0 27 36 587 154 271 RTOR Reduction (vph) 0 5 0 0 26 0 0 16 0 0	358 22 3 (377 (
RTOR Reduction (vph) 0 5 0 0 26 0 0 16 0 0	358 22 3 (377 (
	3 (_ 377 (
	377 (
Lane Group Flow (vph) 0 1 0 14 1 0 36 725 0 271	
Turn Type NA Split NA Prot NA Prot	NA
Protected Phases 4 4 3 3 5 2 1	6 10
Permitted Phases	- 14
Actuated Green, G (s) 14.0 4.0 4.0 4.3 50.8 22.9	81.3
Effective Green, g (s) 14.0 4.0 4.0 4.3 50.8 22.9	81.3
Actuated g/C Ratio 0.12 0.03 0.03 0.04 0.42 0.19	0.68
Clearance Time (s) 4.1 4.1 4.1 4.1 4.1 4.1	
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0	
Lane Grp Cap (vph) 194 60 54 65 1499 349	2455
v/s Ratio Prot c0.00 c0.01 0.00 0.02 c0.20 c0.15	c0.10
v/s Ratio Perm	
v/c Ratio 0.00 0.23 0.02 0.55 0.48 0.78	0.15
Uniform Delay, d1 46.8 56.5 56.1 56.9 25.1 46.1	7.0
Progression Factor 1.00 1.00 1.00 1.22 0.65 1.11	0.18
Incremental Delay, d2 0.0 2.0 0.1 9.6 1.1 10.2	0.0
Delay (s) 46.8 58.5 56.2 78.8 17.5 61.3	1.3
Level of Service D E E E B E	Α
Approach Delay (s) 46.8 57.0 20.3	26.3
Approach LOS D E C	С
intersection Summary	
HCM 2000 Control Delay 24.1 HCM 2000 Level of Service C	10
HCM 2000 Volume to Capacity ratio 0.45	
Actuated Cycle Length (s) 120.0 Sum of lost time (s) 20.5	
Intersection Capacity Utilization 50.2% ICU Level of Service A	
Analysis Period (min) 15	
c Critical Lane Group	

1205: Stoneridge Mall & West BART

	•	•	†	-	↓	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Group Flow (vph)	44	51	614	259	606	
v/c Ratio	0.13	0.14	0.31	0.71	0.27	
Control Delay	35.9	10.5	0.4	55.1	14.3	
Queue Delay	0.0	0.0	0.1	0.0	0.0	
Total Delay	35.9	10.5	0.5	55.1	14.3	
Queue Length 50th (ft)	26	0	0	188	155	
Queue Length 95th (ft)	56	32	0	262	182	
Internal Link Dist (ft)	792		237		1455	
Turn Bay Length (ft)				100		
Base Capacity (vph)	504	460	1961	472	2318	
Starvation Cap Reductn	0	0	340	0	0	
Spillback Cap Reductn	0	0	0	0	Ō	
Storage Cap Reductn	0	Ō	Ö	Ö	Ō	
Reduced v/c Ratio	0.09	0.11	0.38	0.55	0.26	

	•	4	†	~	-	+	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	4	7	† ‡		ሻ	† †	
Volume (vph)	40	46	343	210	233	545	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	3.0	3.0		3.0	3.0	
Lane Util. Factor	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.85	0.94		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1829	1636	3449		1829	3657	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	1829	1636	3449		1829	3657	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	44	51	381	233	259	606	
RTOR Reduction (vph)	0	41	59	0	0	0	
Lane Group Flow (vph)	44	10	555	0	259	606	
Turn Type	Perm	Over	NA		Prot	NA	
Protected Phases		1	2 10		1	6	
Permitted Phases	8						
Actuated Green, G (s)	22.1	22.9	62.7		22.9	69.4	
Effective Green, g (s)	23.2	24.0	63.8		24.0	70.5	
Actuated g/C Ratio	0.19	0.20	0.53		0.20	0.59	
Clearance Time (s)	4.1	4.1			4.1	4.1	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	
Lane Grp Cap (vph)	353	327	1833		365	2148	
v/s Ratio Prot		0.01	c0.16		c0.14	0.17	
v/s Ratio Perm	c0.02						
v/c Ratio	0.12	0.03	0.30		0.71	0.28	
Uniform Delay, d1	40.0	38.6	15.7		44.8	12.2	
Progression Factor	1.00	1.00	0.00		1.00	1.00	
Incremental Delay, d2	0.2	0.0	0.1		6.2	0.3	
Delay (s)	40.2	38.7	0.1		51.0	12.6	
Level of Service	D	D	Α		D	В	
Approach Delay (s)	39.4		0.1			24.1	
Approach LOS	D		Α			С	
Intersection Summary		457		图: 题			
HCM 2000 Control Delay			15. 6	H	CM 2000	Level of Service	e B
HCM 2000 Volume to Capac	ity ratio		0.39				
Actuated Cycle Length (s)			120.0	St	um of lost	time (s)	18.3
Intersection Capacity Utilizati	ion		43.3%	IC	U Level o	of Service	Α
Analysis Period (min)			15				
c Critical Lane Group							

	-	•	←	4	†	-	↓	
Lane Group	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	6	22	34	36	885	333	398	
v/c Ratio	0.01	0.21	0.05	0.38	0.62	0.75	0.15	
Control Delay	0.0	59.1	0.1	65.4	26.7	43.0	2.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	1.5	0.1	
Total Delay	0.0	59.1	0.1	65.4	26.7	44.4	2.1	
Queue Length 50th (ft)	0	17	0	28	182	134	12	
Queue Length 95th (ft)	0	45	0	m65	#455	176	16	
Internal Link Dist (ft)	204		679		462		237	
Turn Bay Length (ft)				100		90		
Base Capacity (vph)	740	107	756	100	1424	516	2612	
Starvation Cap Reductn	0	0	0	0	0	67	935	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.01	0.21	0.04	0.36	0.62	0.74	0.24	
ntersection Summary		Carlot of		i k	50 638	53.53		。 1985年(1985年) 1986年(1986年)

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	4-	4	1	†	<i>*</i>	-	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SET	SER
Lane Configurations		4		ሻ	1-		7	414		ሻ	414	
Volume (vph)	0	0	5	20	0	31	32	611	185	300	338	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.1		4.1	4.1		4.1	4.1		4.1	4.1	
Lane Util, Factor		1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt		0.86		1.00	0.85		1.00	0.97		1.00	0.99	
Fit Protected		1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1665		1829	1636		1829	352 9		1829	3627	
Flt Permitted		1.00		0.95	1,00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1665		1829	1636		1829	3529		1829	3627	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	6	22	0	34	36	679	206	333	376	22
RTOR Reduction (vph)	0	5	0	0	32	0	0	21	0	0	3	0
Lane Group Flow (vph)	0	1_	0	22	2	0	36	864	0	333	395	0
Turn Type		NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	4	4		3	3		5	2		. 1	6 10	
Permitted Phases												
Actuated Green, G (s)		12.6		5.7	5.7		3.9	45.3		29.2	81.4	
Effective Green, g (s)		12.6		5.7	5.7		3.9	45.3		29.2	81.4	
Actuated g/C Ratio		0.10		0.05	0.05		0.03	0.38		0.24	0.68	
Clearance Time (s)		4.1		4.1	4.1		4.1	4.1		4.1		
Vehicle Extension (s)		3.0		3.0	3.0		3.0	3.0		3.0		
Lane Grp Cap (vph)		174		86	77		59	1332		445	2460	
v/s Ratio Prot		c0.00		c0.01	0.00		0.02	c0.24		c0.18	c0.11	
v/s Ratio Perm												
v/c Ratio		0.00		0.26	0.02		0.61	0.65		0.75	0.16	
Uniform Delay, d1		48.1		55.1	54.5		57.3	30.8		42.0	7.0	
Progression Factor		1.00		1.00	1.00		0.99	0.75		0.77	0.22	
Incremental Delay, d2		0.0		1.6	0.1		16.9	2.4		6.6	0.0	
Delay (s)		48.1		56.7	54.6		73.7	25.7		39.1	1.5	
Level of Service		D		E	D		E	C		D	A 40.6	
Approach Delay (s)		48.1			55.4 E			27.5			18.6	
Approach LOS		D	- PSS-20-040		E			С			В	
Intersection Summary	22	14.45	671	13.7	1		5,13		T.			363
HCM 2000 Control Delay			24.7	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.54	_								
Actuated Cycle Length (s)			120.0	Sum of lost time (s)					20.5			
Intersection Capacity Utilization	on		57.4%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	1	*	†	-	↓	
Lane Group	WBL	WBR	NBT	SBL	SBT	Real State of the
Lane Group Flow (vph)	58	69	714	383	673	
v/c Ratio	0.17	0.15	0.40	0.83	0.29	
Control Delay	36.8	8.1	0.5	57.9	13.6	
Queue Delay	0.0	0.0	0.1	0.0	0.0	
Total Delay	36.8	8.1	0.7	57.9	13.6	
Queue Length 50th (ft)	34	0	0	278	159	
Queue Length 95th (ft)	68	35	0	381	202	
Internal Link Dist (ft)	792		237		1455	
Turn Bay Length (ft)				100		
Base Capacity (vph)	504	526	1793	533	2309	
Starvation Cap Reductn	0	0	272	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	Ö	Ō	
Reduced v/c Ratio	0.12	0.13	0.47	0.72	0.29	

	•	•	†	1	-	,	
Movement	WBL	WBR	NBT	NBR.	SBL	SBT	型型 经基础 医二氏
Lane Configurations	7	N.	ተጉ		ħ	† †	
Volume (vph)	52	62	351	292	345	606	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	3.0	3.0		3.0	3.0	
Lane Util. Factor	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.85	0.93		1.00	1.00	
Fit Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1829	1636	3408		1829	3657	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	1829	1636	3408		1829	3657	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	-
Adj. Flow (vph)	58	69	390	324	383	673	
RTOR Reduction (vph)	0	52	102	0	0	0	
Lane Group Flow (vph)	58	17	612	0	383	673	
Turn Type	Perm	Over	NA		Prot	NA	
Protected Phases		1	2 10		1	6	
Permitted Phases	8						
Actuated Green, G (s)	22.4	29.2	56.1		29.2	70.6	
Effective Green, g (s)	23.5	30.3	57.2		30.3	71.7	
Actuated g/C Ratio	0.20	0.25	0.48		0.25	0.60	
Clearance Time (s)	4.1	4.1			4.1	4.1	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	
Lane Grp Cap (vph)	358	413	1624		461	2185	
v/s Ratio Prot		0.01	c0.18		c0.21	0.18	
v/s Ratio Perm	c0.03						
v/c Ratio	0.16	0.04	0.38		0.83	0.31	
Uniform Delay, d1	40.1	33.9	20.0		42.4	11.9	
Progression Factor	1.00	1.00	0.00		1.00	1.00	
Incremental Delay, d2	0.2	0.0	0.1		12.1	0.4	
Delay (s)	40.3	33.9	0.1		54.5	12.3	
Level of Service	D	C	Α		D	В	
Approach Delay (s)	36.8		0.1			27.6	
Approach LOS	D		Α			С	
intersection Summary	4.2		4 41		100	(2)	的身份就是是是一个
HCM 2000 Control Delay			17.9	Н	CM 2000	Level of Ser	rvice B
HCM 2000 Volume to Capa	acity ratio		0.50				
Actuated Cycle Length (s)			120.0	Si	um of los	t time (s)	18.3
Intersection Capacity Utiliz	ation		52.4%	IC	U Level	of Service	Α
Analysis Period (min)			15				
c Critical Lane Group							

	\rightarrow	1	←	•	4	†	-	1	
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	58	118	123	122	51	617	33	522	
v/c Ratio	0.17	0.57	0.43	0.38	0.40	0.38	0.22	0.24	
Control Delay	1.0	60.9	13.3	6.5	85.6	15.7	68.7	13.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
Total Delay	1.0	60.9	13.3	6.5	85.6	15.7	68.7	13.7	
Queue Length 50th (ft)	0	89	1	0	41	81	27	85	
Queue Length 95th (ft)	0	146	58	29	86	263	63	107	
Internal Link Dist (ft)	204		679			462		237	
Turn Bay Length (ft)					100		90		
Base Capacity (vph)	432	258	324	356	151	1622	318	2137	
Starvation Cap Reductn	0	0	0	0	0	0	0	764	
Spillback Cap Reductn	0	0	0	0	0	6	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.46	0.38	0.34	0.34	0.38	0.10	0.38	
Intersection Summary	and Wa	V2.8500			252		建		

	۶	→	•	1	4-	4	1	†	<i>></i>	1	1	4
Movement	EBL	EBT	EBR	WBC	WBT	WBR	NBL	NBT	NER	SBL	SBT	SBR
Lane Configurations	5916-	4		ሻ	1	7	ሻ	† ‡		ሻ	414	
Volume (vph)	11	0	41	106	1	220	46	537	18	30	466	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.1		4.1	4.1	4.1	4.1	4.1		4.1	4.1	
Lane Util. Factor		1.00		1.00	0.95	0.95	1.00	0.95		1.00	0.95	
Frt		0.89		1.00	0.85	0.85	1.00	1.00		1.00	1.00	
Flt Protected		0.99		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1701		1829	1557	1554	1829	3639		1829	3653	
Flt Permitted		0.99		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1701		1829	1557	1554	1829	3639		1829	3653	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	12	0	46	118	1	244	51	597	20	33	518	4
RTOR Reduction (vph)	0	51	0	0	108	108	0	2	0	0	0	0
Lane Group Flow (vph)	0	7	0	118	15	14	51	615	0	33	522	0
Turn Type	Split	NA		Split	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	4	4		3	3		5	2		1	6 10	
Permitted Phases						3						
Actuated Green, G (s)		13.7		13.7	13.7	13.7	7.2	52.6		9.9	69.0	
Effective Green, g (s)		13.7		13.7	13.7	13.7	7.2	52.6		9.9	69.0	
Actuated g/C Ratio		0.11		0.11	0.11	0.11	0.06	0.44		0.08	0.58	
Clearance Time (s)		4.1		4.1	4.1	4.1	4.1	4.1		4.1		
Vehicle Extension (s)		3.0		3.0	3.0	3.0	3.0	3.0		3.0		
Lane Grp Cap (vph)		194		208	177	177	109	1595		150	2100	
v/s Ratio Prot		c0.00		c0.06	0.01		c0.03	c0.17		0.02	c0.14	
v/s Ratio Perm						0.01						
v/c Ratio		0.03		0.57	0.08	0.08	0.47	0.39		0.22	0.25	
Uniform Delay, d1		47.3		50.3	47.5	47.5	54.5	22.8		51.4	12.6	
Progression Factor		1.00		1.00	1.00	1.00	1.44	0.61		1.31	0.89	
Incremental Delay, d2		0.1		3.5	0.2	0.2	3.1	0.7		0.7	0.1	
Delay (s)		47.3		53.9	47.7	47.7	81.6	14.6		68.1	11.3	
Level of Service		D		D	D	D	F	В		Е	В	
Approach Delay (s)		47.3			49.7			19.7			14.7	
Approach LOS		D			D			В			В	
Intersection Summary	FL MIS			## (T	(E.118)		Book I				Mark And	
HCM 2000 Control Delay			25.6	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.35									
Actuated Cycle Length (s)	-		120.0	Sum of lost time (s)				20.5				
Intersection Capacity Utilization	on		42.4%			of Service	:		Α			
Analysis Period (min)			15									
c Critical Lane Group												
c Griddai Lane Group												

	1	4	†	>	↓	-
ane Group	WBL	WBR	NBT	SBL	SBT	HERE TO A CASE AND A STATE OF THE STATE OF T
Lane Group Flow (vph)	208	261	852	62	348	
v/c Ratio	0.43	0.68	0.41	0.37	0.20	
Control Delay	37.1	15.1	5.3	56.5	20.8	
Queue Delay	0.0	0.0	0.1	0.0	0.0	
Total Delay	37.1	15.1	5.4	56.5	20.8	
Queue Length 50th (ft)	122	0	52	46	96	
Queue Length 95th (ft)	179	78	91	87	128	
Internal Link Dist (ft)	792		237		1455	
Turn Bay Length (ft)				100		
Base Capacity (vph)	661	513	2062	335	1780	
Starvation Cap Reductn	0	0	253	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.31	0.51	0.47	0.19	0.20	
Intersection Summary		G/z (1	P. P. S.	。

	•	•	†	-	-	+	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	Programme and the second
Lane Configurations	ሻ	7	† ‡		ሻ	^	
Volume (vph)	187	235	714	53	56	313	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	3.0	3.0		3.0	3.0	
Lane Util. Factor	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.85	0.99		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1829	1636	3619		1829	3657	
Flt Permitted	0.95	1.00	1,00		0.95	1.00	
Satd. Flow (perm)	1829	1636	3619		1829	3657	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	208	261	793	59	62	348	
RTOR Reduction (vph)	0	237	3	0	0	0	
Lane Group Flow (vph)	208	24	849	0	62	348	
Tum Type	Perm	Over	NA		Prot	NA	-
Protected Phases		1	2 10		1	6	
Permitted Phases	8						
Actuated Green, G (s)	31.5	9.9	66.3		9.9	55.3	
Effective Green, g (s)	32.6	11.0	67.4		11.0	56.4	
Actuated g/C Ratio	0.27	0.09	0.56		0.09	0.47	
Clearance Time (s)	4.1	4.1			4.1	4.1	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	
Lane Grp Cap (vph)	496	149	2032		167	1718	
v/s Ratio Prot		0.01	c0.23		c0.03	c0.10	
v/s Ratio Perm	c0.11						
v/c Ratio	0.42	0.16	0.42		0.37	0.20	
Uniform Delay, d1	35.9	50.2	15.1		51.2	18.6	
Progression Factor	1.00	1.00	0.27		1.00	1.00	
Incremental Delay, d2	0.6	0.5	0.1		1.4	0.3	
Delay (s)	36.5	50.8	4.2		52.6	18.9	
Level of Service	D	D	A		D	В	
Approach Delay (s)	44.4		4.2			24.0	
Approach LOS	D		Α			С	
Intersection Summary	20.00			1.0/		曾经经历	find the first by the state of
HCM 2000 Control Delay			19.8	Н	CM 2000	Level of	Service B
HCM 2000 Volume to Capa	city ratio		0.44				
Actuated Cycle Length (s)			120.0			t time (s)	18.3
Intersection Capacity Utiliza	ition		46.0%	IC	CU Level	of Service	e A
Analysis Period (min)			15				
c Critical Lane Group							

	-	1	4-	•		†	-	↓	
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	ATT TO STATE OF THE PARTY
Lane Group Flow (vph)	58	163	151	149	51	648	46	603	
v/c Ratio	0.17	0.66	0.44	0.43	0.43	0.42	0.26	0.29	
Control Delay	1.0	62.3	11.6	10.0	89.5	17.7	65.1	17.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
Total Delay	1.0	62.3	11.7	10.0	89.5	17.7	65.1	17.2	
Queue Length 50th (ft)	0	122	1	0	41	152	37	117	
Queue Length 95th (ft)	0	193	64	54	86	289	79	144	
Internal Link Dist (ft)	204		679			462		237	
Turn Bay Length (ft)					100		90		
Base Capacity (vph)	429	272	359	367	134	1550	362	2085	
Starvation Cap Reductn	0	0	0	0	0	0	0	688	
Spillback Cap Reductn	1	0	1	1	0	25	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.14	0.60	0.42	0.41	0.38	0.42	0.13	0.43	
Intersection Summary	4124				9.5	W775	15-14-15		406% (VIV.)

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBL Lane Configurations 4+	9 4 0 1900 1 5 0 0 4 0 0.90 9 4 0 0			
Volume (vph) 11 0 41 147 1 269 46 556 27 41 53 Ideal Flow (vphpl) 1900 1	9 4 0 1900 1 5 0 0 4 0 0.90 9 4 0 0			
Ideal Flow (vphpl)	0 1900 1 5 0 0 4 0 0.90 9 4			
Total Lost time (s)	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
Lane Util. Factor 1.00 1.00 0.95 0.95 1.00 0.95 1.00 0.95	5 0 1 4 0 4 0 0 0 0 9 4 0			
Frt 0.89 1.00 0.85 0.85 1.00 0.99 1.00 1.0 Flt Protected 0.99 0.95 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1701 1829 1556 1554 1829 3632 1829 365 Flt Permitted 0.99 0.95 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1701 1829 1556 1554 1829 3632 1829 365 Peak-hour factor, PHF 0.90 0	0 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Fit Protected 0.99 0.95 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1701 1829 1556 1554 1829 3632 1829 3655 Flt Permitted 0.99 0.95 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1701 1829 1556 1554 1829 3632 1829 3655 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	0 4 0 4 0 0.90 9 4 0 0			
Satd. Flow (prot) 1701 1829 1556 1554 1829 3632 1829 365 Flt Permitted 0.99 0.95 1.00 1.00 0.95 1.00 0.9	0.90 0 0.90 0 0.90			
Filt Permitted 0.99 0.95 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1701 1829 1556 1554 1829 3632 1829 3655 1564 1829 3632 1829 3655 1564 1829 3632 1829 3655 1564 1829 3655 1564 1829 3632 1829 3655 1564 1564 1565 1564 1565 1564 1565 1564 1565 1564 1565 1564 1565 1564 1565 1564 1565 1565	0 0.90 9 4			
Satd. Flow (perm) 1701 1829 1556 1554 1829 3632 1829 365 Peak-hour factor, PHF 0.90	0.90 9 4 0 0			
Peak-hour factor, PHF 0.90	0.90 9 4 0 0			
Adj. Flow (vph) 12 0 46 163 1 299 51 618 30 46 59 RTOR Reduction (vph) 0 51 0 0 130 129 0 2 0 0 0 Lane Group Flow (vph) 0 7 0 163 21 20 51 646 0 46 60 Turn Type Split NA Split NA Perm Prot NA Prot NA Permitted Phases 4 4 3 3 5 2 1 61 Permitted Phases 3 3 16.3 16.3 6.7 50.3 11.5 66.9 Effective Green, G (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.9 Effective Green, g (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.9 Actuated g/C Ratio 0.11 0.14	9 4			
Adj. Flow (vph) 12 0 46 163 1 299 51 618 30 46 59 RTOR Reduction (vph) 0 51 0 0 130 129 0 2 0 0 66 Lane Group Flow (vph) 0 7 0 163 21 20 51 646 0 46 60 Turn Type Split NA Split NA Perm Prot NA Prot NA Protected Phases 4 4 3 3 5 2 1 618 Permitted Phases 3 3 5 2 1 618 Permitted Phases 3 3 6.7 50.3 11.5 66.9 Effective Green, G (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.9 Effective Green, g (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.9 Actuated g/C Ratio 0.11 0.14 0.14 0.14	9 4			
Lane Group Flow (vph) 0 7 0 163 21 20 51 646 0 46 60 Turn Type Split NA Split NA Perm Prot NA Prot NA Protected Phases 4 4 3 3 5 2 1 610 Permitted Phases 3 3 6.7 50.3 11.5 66.0 Actuated Green, G (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.0 Effective Green, g (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.0 Actuated g/C Ratio 0.11 0.14 0.14 0.14 0.06 0.42 0.10 0.5 Clearance Time (s) 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 <	0 0			
Turn Type				
Protected Phases 4 4 3 3 5 2 1 6 1 Permitted Phases 3 3 5 2 1 6 1 Actuated Green, G (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66. Effective Green, g (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66. Actuated g/C Ratio 0.11 0.14 0.14 0.06 0.42 0.10 0.5 Clearance Time (s) 4.1				
Protected Phases 4 4 3 3 5 2 1 6 10 Permitted Phases 3 3 5 2 1 6 10 Actuated Green, G (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.5 Effective Green, g (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.5 Actuated g/C Ratio 0.11 0.14 0.14 0.06 0.42 0.10 0.5 Clearance Time (s) 4.1 </td <td></td>				
Permitted Phases Actuated Green, G (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.5 Effective Green, g (s) 13.7 16.3 16.3 16.3 6.7 50.3 11.5 66.5 Actuated g/C Ratio 0.11 0.14 0.14 0.04 0.06 0.42 0.10 0.50 Clearance Time (s) 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 Vehicle Extension (s) 3.0 3.				
Effective Green, g (s) 13.7 16.3 16.3 6.7 50.3 11.5 66.3 Actuated g/C Ratio 0.11 0.14 0.14 0.06 0.42 0.10 0.50 Clearance Time (s) 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 194 248 211 211 102 1522 175 203 v/s Ratio Perm 0.01 c0.03 c0.18 c0.03 c0.10				
Effective Green, g (s) 13.7 16.3 16.3 6.7 50.3 11.5 66.7 Actuated g/C Ratio 0.11 0.14 0.14 0.14 0.06 0.42 0.10 0.50 Clearance Time (s) 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 194 248 211 211 102 1522 175 203 v/s Ratio Perm 0.01 c0.03 c0.18 c0.03 c0.10	3			
Clearance Time (s) 4.1 </td <td>}</td>	}			
Vehicle Extension (s) 3.0	š			
Lane Grp Cap (vph) 194 248 211 211 102 1522 175 203 v/s Ratio Prot c0.00 c0.09 0.01 c0.03 c0.18 c0.03 c0.11 v/s Ratio Perm 0.01				
v/s Ratio Prot c0.00 c0.09 0.01 c0.03 c0.18 c0.03 c0.10 v/s Ratio Perm 0.01				
v/s Ratio Prot c0.00 c0.09 0.01 c0.03 c0.18 c0.03 c0.10 v/s Ratio Perm 0.01	7			
v/s Ratio Perm 0.01				
v/c Ratio 0.03 0.66 0.10 0.10 0.50 0.42 0.26 0.3				
)			
Uniform Delay, d1 47.3 49.2 45.4 45.4 55.0 24.6 50.3 14.	1			
Progression Factor 1.00 1.00 1.00 1.47 0.64 1.27 1.04	1			
Incremental Delay, d2 0.1 6.2 0.2 0.2 3.7 0.8 0.8 0.	1			
Delay (s) 47.3 55.4 45.6 45.6 84.4 16.6 64.5 14.6				
Level of Service D E D D F B E I	3			
Approach Delay (s) 47.3 49.0 21.5 18.5	<u>}</u>			
Approach LOS D D C				
Intersection Summary				
HCM 2000 Control Delay 28.0 HCM 2000 Level of Service C				
HCM 2000 Volume to Capacity ratio 0.40				
Actuated Cycle Length (s) 120.0 Sum of lost time (s) 20.5	20.5			
Intersection Capacity Utilization 45.5% ICU Level of Service A				
Analysis Period (min) 15				
c Critical Lane Group				

	•	4	†	-	↓	
ane.Group	WBL	WBR	NBT	SBL	SBT	
Lane Group Flow (vph)	288	371	929	84	361	
v/c Ratio	0.55	0.74	0.48	0.44	0.20	
Control Delay	38.7	14.2	7.4	56.5	20.6	
Queue Delay	0.0	0.0	0.1	0.0	0.0	
Total Delay	38.7	14.2	7.4	56.5	20.6	
Queue Length 50th (ft)	171	0	70	62	93	
Queue Length 95th (ft)	246	91	118	108	133	
Internal Link Dist (ft)	792		237		1455	
Turn Bay Length (ft)				100		
Base Capacity (vph)	672	633	1931	379	1761	
Starvation Cap Reductn	0	0	121	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.43	0.59	0.51	0.22	0.20	
Intersection Summary						

	•	•	†	~	-	1	-
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	41		ሻ	† †	
Volume (vph)	259	334	768	68	76	325	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	3.0	3.0		3.0	3.0	
Lane Util. Factor	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.85	0.99		1.00	1.00	
Fit Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1829	1636	3612		1829	3657	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	1829	1636	3612		1829	3657_	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	288	371	853	76	84	361	
RTOR Reduction (vph)	0	332	4	0	0	0	
Lane Group Flow (vph)	288	39	925	0	84	361	
Turn Type	Perm	Over	NA		Prot	NA	
Protected Phases		1	2 10		1	6	H 74
Permitted Phases	8						
Actuated Green, G (s)	34.1	11.5	62.1		11.5	55.1	
Effective Green, g (s)	35.2	12.6	63.2		12.6	56.2	
Actuated g/C Ratio	0.29	0.10	0.53		0.10	0.47	
Clearance Time (s)	4.1	4.1			4.1	4.1	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	
Lane Grp Cap (vph)	536	171	1902		192	1712	
v/s Ratio Prot		0.02	c0.26		c0.05	0.10	
v/s Ratio Perm	c0.16						
v/c Ratio	0.54	0.23	0.49		0.44	0.21	
Uniform Delay, d1	35.6	49.2	18.1		50.4	18.8	
Progression Factor	1.00	1.00	0.32		1.00	1.00	
Incremental Delay, d2	1.0	0.7	0.2		1.6	0.3	
Delay (s)	36.6	49.9	6.0		52.0	19.1	
Level of Service	D	D	Α		D	В	
Approach Delay (s)	44.1		6.0			25.3	
Approach LOS	D		Α			С	
Intersection Summary	100				e 913	19170	THE PARTY HER THE PARTY HAVE
HCM 2000 Control Delay			22.6	H	CM 2000	Level of Servi	ce C
HCM 2000 Volume to Cap	HCM 2000 Volume to Capacity ratio		0.54				
Actuated Cycle Length (s)			120.0	Sum of lost time (s)			18.3
Intersection Capacity Utiliz	Intersection Capacity Utilization		52.0%	ICU Level of Service			A
Analysis Period (min)			15				
c Critical Lane Group							

	-	1	←	1	†	-	↓	
Lane Group	EBT	WBL	WBT	NBL,	NBT	SBL	SBT	
Lane Group Flow (vph)	11	22	37	36	793	281	350	
v/c Ratio	0.02	0.15	0.05	0.30	0.43	0.78	0.12	
Control Delay	0.0	53.1	0.1	59.3	20.4	61.7	1.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	2.5	0.1	
Total Delay	0.0	53.1	0.1	59.3	20.4	64.2	1.5	
Queue Length 50th (ft)	0	16	0	27	193	183	12	
Queue Length 95th (ft)	Ó	44	0	61	294	213	16	
Internal Link Dist (ft)	204		679		462		237	
Turn Bay Length (ft)				100		90		
Base Capacity (vph)	777	146	740	123	1849	452	2883	
Starvation Cap Reductn	0	0	0	0	0	82	1526	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.01	0.15	0.05	0.29	0.43	0.76	0.26	
intersection Summary				1.2				A PER SERVICE DE LA COMPANIO

	۶	→	*	•	←	4	4	†	~	>	†	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44		7	f.		J.	4 ħ		ሻ	† †	
Volume (vph)	0	0	10	20	0	33	32	568	146	253	295	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.1		4.1	4.1		4.1	4.1		4.1	4.1	
Lane Util. Factor		1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt		0.86		1.00	0.85		1.00	0.97		1.00	0.99	
Fit Protected		1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1665		1829	1636		1829	3545		1829	3623	
Fit Permitted		1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1665		1829	1636		1829	3545		1829	3623	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	11	22	0	37	36	631	162	281	328	22
RTOR Reduction (vph)	0	11	0	0	34	0	0	14	0	0	3	0
Lane Group Flow (vph)	0	0	0	22	3	0	36	779	0	281	347	0
Tum Type		NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	4	4		3	3		5	2		1	6 10	
Permitted Phases												
Actuated Green, G (s)		1.1		8.2	8.2		5.4	58.1		23.5	88.9	
Effective Green, g (s)		1.1		8.2	8.2		5.4	58.1		23.5	88.9	
Actuated g/C Ratio		0.01		0.07	0.07		0.05	0.48		0.20	0.74	
Clearance Time (s)		4.1		4.1	4.1		4.1	4.1		4.1		
Vehicle Extension (s)		3.0		3.0	3.0		3.0	3.0		3.0		
Lane Grp Cap (vph)		15		124	111		82	1716		358	2684	
v/s Ratio Prot		c0.00		c0.01	0.00		0.02	c0.22		c0.15	c0.10	
v/s Ratio Perm												
v/c Ratio		0.01		0.18	0.02		0.44	0.45		0.78	0.13	
Uniform Delay, d1		58.9		52.7	52.2		55.8	20.5		45.8	4.5	
Progression Factor		1.00		1.00	1.00		1.00	1.00		1.02	0.30	
Incremental Delay, d2		0.2		0.7	0.1		3.7	0.9		10.6	0.0	
Delay (s)		59.1		53.4	52.2		59.5	21.3		57.6	1.3	
Level of Service		Е		D	D		Е	С		Ε	Α	
Approach Delay (s)		59.1			52.7			23.0			26.4	
Approach LOS		Ε			D			С			С	
Intersection Summary		27.1		生物	4							
HCM 2000 Control Delay			25.8	H	CM 2000	Level of	Service		C			
HCM 2000 Volume to Capacity	ratio		0.48									
Actuated Cycle Length (s)			120.0	Si	um of los	time (s)			20.5			
Intersection Capacity Utilization	l		52.4%	10	:U Level	of Service	+		Α			
Analysis Period (min)			15									
c Critical Lane Group												

1205: Stoneridge Mall & West BART

	•	•	†	-	1	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Group Flow (vph)	53	67	668	262	578	
v/c Ratio	0.28	0.17	0.30	0.70	0.23	
Control Delay	51.1	9.2	0.3	53.8	8.9	
Queue Delay	0.0	0.0	0.1	0.0	0.0	
Total Delay	51.1	9.2	0.4	53.8	8.9	
Queue Length 50th (ft)	39	0	0	190	92	
Queue Length 95th (ft)	74	35	0	261	141	
Internal Link Dist (ft)	792		237		1455	
Turn Bay Length (ft)				100		
Base Capacity (vph)	504	469	2227	469	2530	
Starvation Cap Reductn	0	0	507	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.14	0.39	0.56	0.23	
Intersection Summary				12:5/3		

	•	4	†	-	-	1	
Movement	WBL	WBR	NBT	NBR	SBL	SET	
Lane Configurations	ሻ	7	† ‡		ሻ	^	
Volume (vph)	48	60	386	215	236	520	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	3.0	3.0		3.0	3.0	
Lane Util. Factor	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.85	0.95		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1829	1636	3461		1829	3657	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	1829	1636	3461		1829	3657	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	53	67	429	239	262	578	
RTOR Reduction (vph)	0	53	42	0	0	0	
Lane Group Flow (vph)	53	14	626	0	262	578	
Turn Type	Perm	Over	NA		Prot	NA	
Protected Phases		1	2 10		1	6	
Permitted Phases	8						
Actuated Green, G (s)	13.4	23.5	70.8		23.5	76.2	
Effective Green, g (s)	14.5	24.6	71.9		24.6	77.3	
Actuated g/C Ratio	0.12	0.21	0.60		0.21	0.64	
Clearance Time (s)	4.1	4.1			4.1	4.1	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	
Lane Grp Cap (vph)	221	335	2073		374	2355	
v/s Ratio Prot		0.01	c0.18		c0.14	0.16	
v/s Ratio Perm	c0.03						
v/c Ratio	0.24	0.04	0.30		0.70	0.25	
Uniform Delay, d1	47.8	38.2	11.8		44.3	9.0	
Progression Factor	1.00	1.00	0.00		1.00	1.00	
Incremental Delay, d2	0.6	0.1	0.1		5.8	0.2	
Delay (s)	48.3	38.3	0.1		50.1	9.3	
Level of Service	D	D	A		D	A	
Approach Delay (s)	42.7		0.1			22.0	
Approach LOS	D		Α			С	
Intersection Summary			1	1.00	12. 有型		
HCM 2000 Control Delay			14.5	Н	CM 2000	Level of Ser	vice B
HCM 2000 Volume to Capa	city ratio		0.42				
Actuated Cycle Length (s)			120.0		um of los		18.3
Intersection Capacity Utiliza	ition		44.8%	IC	U Level	of Service	Α
Analysis Period (min)			15				
c Critical Lane Group							

	→	•	←	4	†	-	1	
Lane Group	EBT	WBL	WBT	NBL	NET	SBL	SBT	
Lane Group Flow (vph)	11	30	44	36	936	343	368	
v/c Ratio	0.02	0.29	0.06	0.38	0.65	0.80	0.14	
Control Delay	0.0	61.5	0.2	75.6	26.8	50.8	2.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	4.1	0.1	
Total Delay	0.0	61.5	0.2	75.6	26.8	54.9	2.4	
Queue Length 50th (ft)	0	23	0	29	347	133	13	
Queue Length 95th (ft)	0	55	0	m66	#440	224	18	
Internal Link Dist (ft)	204		679		462		237	
Turn Bay Length (ft)				100		90		
Base Capacity (vph)	754	109	719	100	1446	461	2607	
Starvation Cap Reductn	0	0	0	0	0	62	987	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.01	0.28	0.06	0.36	0.65	0.86	0.23	
Intersection Summary								

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	٠	-	•	•	←	•	1	†	~	>	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NET	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	1-		ሻ	1 1		7	414	
Volume (vph)	0	0	10	27	0	40	32	651	192	309	311	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.1		4.1	4.1		4.1	4.1		4.1	4.1	
Lane Util. Factor		1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt		0.86		1.00	0.85		1.00	0.97		1.00	0.99	
Fit Protected		1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1665		1829	1636		1829	3532		1829	3624	
Flt Permitted		1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1665		1829	1636		1829	3532		1829	3624	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	11	30	0	44	36	723	213	343	346	22
RTOR Reduction (vph)	0	10	0	0	42	0	0	20	0	0	3	0
Lane Group Flow (vph)	0	1	0	30	2	0	36	916	0	343	365	0
Turn Type		NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	4	4		3	3		5	2		1	6 10	
Permitted Phases												
Actuated Green, G (s)		12.6		5.8	5.8		3.9	45.9		28.2	81.3	
Effective Green, g (s)		12.6		5.8	5.8		3.9	45.9		28.2	81.3	
Actuated g/C Ratio		0.10		0.05	0.05		0.03	0.38		0.23	0.68	
Clearance Time (s)		4.1		4.1	4.1		4.1	4.1		4.1		
Vehicle Extension (s)		3.0		3.0	3.0		3.0	3.0		3.0		
Lane Grp Cap (vph)		174		88	79		59	1350		429	2455	
v/s Ratio Prot		c0.00		c0.02	0.00		0.02	c0.26		c0.19	c0.10	
v/s Ratio Perm												
v/c Ratio		0.01		0.34	0.03		0.61	0.68		0.80	0.15	
Uniform Delay, d1		48.1		55.3	54.4		57.3	30.9		43.2	6.9	
Progression Factor		1.00		1.00	1.00		1.18	0.77		0.84	0.26	
Incremental Delay, d2		0.0		2.3	0.1		17.0	2.7		9.8	0.0	
Delay (s)		48.1		57.6	54.5		84.3	26.5		46.3	1.8	
Level of Service		Đ		Ε	D		F	С		D	Α	
Approach Delay (s)		48.1			55.8			28.7			23.3	
Approach LOS		D			E			С			С	
Intersection Summary	有 选生	E HILL	7.53					1955	13			
HCM 2000 Control Delay			27.8	Н	CM 2000	Level of S	Service		Ç			
HCM 2000 Volume to Capacit	y ratio		0.57									
Actuated Cycle Length (s)			120.0		um of lost				20.5			
Intersection Capacity Utilization	n		59.7%	IC	U Level o	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Per Emp - Trip Gen Cumulative AM

	1	•	†	-	1	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Group Flow (vph)	67	84	768	387	646	
v/c Ratio	0.19	0.18	0.42	0.87	0.28	
Control Delay	37.5	8.1	0.6	63.6	13.5	
Queue Delay	0.0	0.0	0.1	0.0	0.0	
Total Delay	37.6	8.1	0.7	63.6	13.5	
Queue Length 50th (ft)	39	0	0	282	151	
Queue Length 95th (ft)	77	39	0	#433	194	
Internal Link Dist (ft)	792		237		1455	
Turn Bay Length (ft)				100		
Base Capacity (vph)	504	490	1821	478	2299	
Starvation Cap Reductn	0	0	257	0	0	
Spillback Cap Reductn	36	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.14	0.17	0.49	0.81	0.28	

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	4	†	~	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	N N	74	414		ሻ	† †	
Volume (vph)	60	76	394	297	348	581	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	3.0	3.0		3.0	3.0	
Lane Util. Factor	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.85	0.94		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1829	1636	3421		1829	3657	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	1829	1636	3421		1829	3657	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	67	84	438	330	387	646	
RTOR Reduction (vph)	0	63	96	0	0	0	
Lane Group Flow (vph)	67	21	672	0	387	646	10
Turn Type	Perm	Over	NA		Prot	NA	
Protected Phases		1	2 10		1	6	
Permitted Phases	8						
Actuated Green, G (s)	22.5	28.2	57.0		28.2	70.2	
Effective Green, g (s)	23.6	29.3	58.1		29.3	71.3	
Actuated g/C Ratio	0.20	0.24	0.48		0.24	0.59	
Clearance Time (s)	4.1	4.1			4.1	4.1	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	
Lane Grp Cap (vph)	359	399	1656		446	2172	
v/s Ratio Prot		0.01	c0.20		c0.21	0.18	
v/s Ratio Perm	c0.04						
v/c Ratio	0.19	0.05	0.41		0.87	0.30	
Uniform Delay, d1	40.2	34.7	19.9		43.5	12.0	
Progression Factor	1.00	1.00	0.00		1.00	1.00	
Incremental Delay, d2	0.3	0.1	0.1		16.2	0.4	
Delay (s)	40.4	34.8	0.1		59.6	12.4	
Level of Service	D	C	A		Ε	В	
Approach Delay (s)	37.3		0.1			30.1	
Approach LOS	D		Α			С	
Intersection Summary	OF WEE			6501	S. Com	Personal III	AND THE RESIDENCE OF STREET
HCM 2000 Control Delay			18.8	Н	CM 2000	Level of Ser	vice B
HCM 2000 Volume to Capa	city ratio		0.52				
Actuated Cycle Length (s)			120.0	Sum of lost time (s)			18.3
Intersection Capacity Utiliza	tion		53.9%	IC	U Level	of Service	A
Analysis Period (min)			15				
c Critical Lane Group							

	\rightarrow	•	—		†	-	↓	
Lane Group	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	62	128	250	41	539	40	602	
v/c Ratio	0.18	0.58	0.61	0.35	0.34	0.26	0.28	
Control Delay	1.1	60.3	13.0	84.4	15.6	72.0	12.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
Total Delay	1.1	60.3	13.0	84.4	15.6	72.0	12.5	
Queue Length 50th (ft)	0	96	4	34	70	33	90	
Queue Length 95th (ft)	0	155	79	m73	202	72	110	
Internal Link Dist (ft)	204		679		462		237	
Turn Bay Length (ft)				100		90		
Base Capacity (vph)	432	318	487	123	1595	318	2121	
Starvation Cap Reductn	0	0	0	0	0	0	644	
Spillback Cap Reductn	0	0	0	0	8	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.14	0.40	0.51	0.33	0.34	0.13	0.41	
Intersection Summary			A. 李颜红			***	200	

m Volume for 95th percentile queue is metered by upstream signal.

	•		•	•	—	•	1	†	-	-	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ħ	4		ሻ	1 1		7	Ťβ	
Volume (vph)	16	0	40	115	5	220	37	462	23	36	536	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.1		4.1	4.1		4.1	4.1		4.1	4.1	
Lane Util. Factor		1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt		0.90		1.00	0.85		1.00	0.99		1.00	1.00	
Flt Protected		0.99		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1716		1829	1643		1829	3631		1829	3652	
Flt Permitted		0.99		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1716		1829	1643		1829	3631		1829	3652	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	18	0	44	128	6	244	41	513	26	40	596	6
RTOR Reduction (vph)	0	55	0	0	215	0	0	2	0	0	0	0
Lane Group Flow (vph)	0	7	0	128	35	0	41	537	0	40	602	0
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	· 4	4		['] 3	3		5	2		1	6 10	
Permitted Phases							-	_				
Actuated Green, G (s)		13.7		14.5	14.5		6.7	51.8		10.3	68.7	
Effective Green, g (s)		13.7		14.5	14.5		6.7	51.8		10.3	68.7	
Actuated g/C Ratio		0.11		0.12	0.12		0.06	0.43		0.09	0.57	
Clearance Time (s)		4.1		4.1	4.1		4.1	4.1		4.1		
Vehicle Extension (s)		3.0		3.0	3.0		3.0	3.0		3.0		
Lane Grp Cap (vph)		195		221	198		102	1567		156	2090	
v/s Ratio Prot		c0.00		c0.07	0.02		c0.02	c0.15		0.02	c0.16	
v/s Ratio Perm												
v/c Ratio		0.04		0.58	0.18		0.40	0.34		0.26	0.29	
Uniform Delay, d1		47.3		49.9	47.4		54.7	22.7		51.3	13.1	
Progression Factor		1.00		1.00	1.00		1.44	0.61		1.37	0.78	
Incremental Delay, d2		0.1		3.7	0.4		2.5	0.6		0.9	0.1	
Delay (s)		47.4		53.5	47.8		81.2	14.4		71.0	10.4	
Level of Service		D		D	D		F	В		Ε	В	
Approach Delay (s)		47.4			49.8			19.1			14.1	
Approach LOS		D			D			В			В	
Intersection Summary	THE ST			. 19					9-100	11279		
HCM 2000 Control Delay			25.2	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.33									
Actuated Cycle Length (s)			120.0	Si	um of losi	time (s)			20.5			
Intersection Capacity Utiliza	ıtion		47.5%	IC	U Level	of Service	:		Α			
Analysis Period (min)			15									
c Critical Lane Group												

1205: Stoneridge Mall & West BART

1	4	†	-	↓	
WBL	WBR	NBT	SBL	SBT	A CONTRACTOR OF THE PROPERTY O
218	271	776	70	423	
0.44	0.68	0.38	0.40	0.24	
36.7	14.8	6.1	57.0	21.3	
0.0	0.0	0.1	0.0	0.0	
36.7	14.8	6.2	57.0	21.3	
127	0	56	52	118	
183	79	97	96	158	
792		237		1455	
			100		
719	521	2020	335	1775	
0	0	332	0	0	
0	0	0	0	4	
0	0	0	0	0	
0.30	0.52	0.46	0.21	0.24	
	218 0.44 36.7 0.0 36.7 127 183 792 719 0 0	218 271 0.44 0.68 36.7 14.8 0.0 0.0 36.7 14.8 127 0 183 79 792 719 521 0 0 0 0 0 0	218 271 776 0.44 0.68 0.38 36.7 14.8 6.1 0.0 0.0 0.1 36.7 14.8 6.2 127 0 56 183 79 97 792 237 719 521 2020 0 0 332 0 0 0 0 0	218	218 271 776 70 423 0.44 0.68 0.38 0.40 0.24 36.7 14.8 6.1 57.0 21.3 0.0 0.0 0.1 0.0 0.0 36.7 14.8 6.2 57.0 21.3 127 0 56 52 118 183 79 97 96 158 792 237 1455 0 0 335 1775 0 0 332 0 0 0 0 0 0 4 0 0 0 0 0

•	•	4	†	~	\	†	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7"	414		ሻ	† †	
Volume (vph)	196	244	638	60	63	381	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	3.0	3.0		3.0	3.0	
Lane Util. Factor	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.85	0.99		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1829	1636	3610		1829	3657	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	1829	1636	3610		1829	3657	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	218	271	709	67	70	423	
RTOR Reduction (vph)	0	245	4	0	0	0	
Lane Group Flow (vph)	218	26	772	0	70	423	
Turn Type	Perm	Over	NA		Prot	NA	
Protected Phases		1	2 10		1	6	
Permitted Phases	8						
Actuated Green, G (s)	32.3	10.3	65.1		10.3	55.4	
Effective Green, g (s)	33.4	11.4	66.2		11.4	56.5	
Actuated g/C Ratio	0.28	0.10	0.55		0.10	0.47	
Clearance Time (s)	4.1	4.1			4.1	4.1	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	
Lane Grp Cap (vph)	509	155	1991		173	1721	
v/s Ratio Prot		0.02	c0.21		c0.04	0.12	
v/s Ratio Perm	c0.12						
v/c Ratio	0.43	0.17	0.39		0.40	0.25	
Uniform Delay, d1	35.5	49.9	15.3		51.1	19.0	
Progression Factor	1.00	1.00	0.31		1.00	1.00	
Incremental Delay, d2	0.6	0.5	0.1		1.5	0.3	
Delay (s)	36.1	50.4	4.9		52.7	19.3	
Level of Service	D	D	Α		D	В	
Approach Delay (s)	44.0		4.9			24.1	
Approach LOS	D		Α			С	
Intersection Summary			GREATER OF	E7 4	4.4	8 AM 1848	SUMMERS AND MARKET
HCM 2000 Control Delay			21.2	HCM 2000 Level of Service		Level of Service	ce C
HCM 2000 Volume to Capacit	y ratio		0.44	-			
Actuated Cycle Length (s)	•		120.0	Sum of lost time (s)			18.3
Intersection Capacity Utilization	on		44.6%	ICU Level of Service			A
Analysis Period (min)			15				·
c Critical Lane Group							

	-	•	4	4	†	-	↓	
ane Group	EBT	WBL	WBT	NBL	NBT	SBL	SET	
Lane Group Flow (vph)	62	173	305	41	570	52	683	
v/c Ratio	0.18	0.66	0.62	0.38	0.38	0.29	0.33	
Control Delay	1.1	60.8	11.5	87.9	18.2	68.4	15.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
Total Delay	1.1	60.8	11.5	87.9	18.2	68.4	15.8	
Queue Length 50th (ft)	0	129	4	34	68	42	121	
Queue Length 95th (ft)	0	201	86	m73	258	86	146	
Internal Link Dist (ft)	204		679		462		237	
Turn Bay Length (ft)				100		90		
Base Capacity (vph)	431	303	521	111	1493	367	2079	
Starvation Cap Reductn	0	0	0	0	0	0	578	
Spillback Cap Reductn	1	0	2	0	27	0	0	
Storage Cap Reductn	0	0	0	Ó	0	Ó	0	
Reduced v/c Ratio	0.14	0.57	0.59	0.37	0.39	0.14	0.46	
Intersection Summary	64				y (190		表现是《多数文》的是更 ["] 一	

m Volume for 95th percentile queue is metered by upstream signal.

	٠	→	•	•	+	•	1	†	~	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NET	NBR	SBL	ं इहा	SER
Lane Configurations		44		ሻ	1+		ħ	4 ‡		ሻ	ተ ኩ	
Volume (vph)	16	0	40	156	5	269	37	481	32	47	609	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.1		4.1	4.1		4.1	4.1		4.1	4.1	
Lane Util. Factor		1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt		0.90		1.00	0.85		1.00	0.99		1.00	1.00	
Flt Protected		0.99		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1716		1829	1642		1829	3623		1829	3652	
FIt Permitted		0.99		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1716		1829	1642		1829	3623		1829	3652	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	18	0	44	173	6	299	41	534	36	52	677	6
RTOR Reduction (vph)	0	55	0	0	256	0	0	3	0	0	0	0
Lane Group Flow (vph)	0	7	0	173	49	0	41	567	0	52	683	0
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	4	4		3	3		5	2		1	6 10	
Permitted Phases		40.7		47.0	47.0		5.0	40.0		44.0	00.7	
Actuated Green, G (s)		13.7 13.7		17.3	17.3		5.9	48.6		11.9	66.7	
Effective Green, g (s)				17.3 0.14	17.3		5.9	48.6		11.9 0.10	66.7	
Actuated g/C Ratio Clearance Time (s)		0.11 4.1		4.1	0.14 4.1		0.05 4.1	0.41 4.1		4.1	0.56	
Vehicle Extension (s)		3.0		3.0	3.0		3.0	3.0		3.0		
Lane Grp Cap (vph)		195		263	236		89	1467		181	2029	
v/s Ratio Prot		c0.00		c0.09	0.03		c0.02	c0.16		c0.03	c0.19	
v/s Ratio Prot v/s Ratio Perm		CO.00		60.03	0.03		CU.U2	CO. 10		CU.U3	60.19	
v/c Ratio		0.04		0.66	0.21		0.46	0.39		0.29	0.34	
Uniform Delay, d1		47.3		48.6	45.3		55.5	25.2		50.1	14.6	
Progression Factor		1.00		1.00	1.00		1.43	0.64		1.33	0.92	
Incremental Delay, d2		0.1		5.8	0.4		3.6	0.7		0.8	0.52	
Delay (s)		47.4		54.4	45.7		82.9	16.9		67.7	13.5	
Level of Service		D		D	D		F	В		E	В	
Approach Delay (s)		47.4		_	48.9		•	21.3		_	17.4	
Approach LOS		D			D			C			В	
Intersection Summary		ASSET.	acazinen	5075-FCC-2005	MAN, STORES	MARKET - A	OF EASTERNA	E00757983	A STATE OF THE STA		-	SEASON NO.
HCM 2000 Control Delay	#247 N 開刊刊	A SU By	27.6	ia Chinage H	CM 2000	Level of	Sanica		С	AND PARTY.		PROPERTY.
HCM 2000 Volume to Capa	city ratio		0.38		ON 2000	LCVCI OI	OCI VICE		C			
Actuated Cycle Length (s)	vity radio		120.0	Q	um of los	time (s)			20.5			
Intersection Capacity Utiliza	ition		49.5%	Sum of lost time (s) ICU Level of Service					20.5 A			
Analysis Period (min)			15		O LOTOI (o. Gol VICE	,		7			
c Critical Lane Group			10									
o onuoai cane oroup												

1205: Stoneridge Mall & West BART

6.2			
	Cu	ımulativ	e - PM

	1	*	†	-	↓	
Lans Group	WBL	WBR	NBT	SBL	SBT	
Lane Group Flow (vph)	298	381	852	92	437	
v/c Ratio	0.55	0.74	0.45	0.46	0.25	
Control Delay	38.0	13.9	8.2	56.8	21.4	
Queue Delay	0.0	0.0	0.1	0.0	0.0	
Total Delay	38.0	13.9	8.3	56.8	21.4	
Queue Length 50th (ft)	176	0	74	68	119	
Queue Length 95th (ft)	248	91	121	115	161	
Internal Link Dist (ft)	792		237		1455	
Turn Bay Length (ft)				100		
Base Capacity (vph)	702	644	1883	384	1744	
Starvation Cap Reductn	0	0	187	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.42	0.59	0.50	0.24	0.25	

	<	•	†	~	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	Marian Marian Company
Lane Configurations	ሻ	7	41		ሻ	††	
Volume (vph)	268	343	692	75	83	393	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	3.0	3.0		3.0	3.0	
Lane Util. Factor	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.85	0.99		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1829	1636	3604		1829	3657	
FIt Permitted	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	1829	1636	3604		1829	3657	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	298	381	769	83	92	437	
RTOR Reduction (vph)	0	340	5	0	0	0	
Lane Group Flow (vph)	298	41	847	0	92	437	
Turn Type	Perm	Over	NA		Prot	NA	
Protected Phases		1	2 10		1	6	
Permitted Phases	8						
Actuated Green, G (s)	35.1	11.9	60.7		11.9	54.6	
Effective Green, g (s)	36.2	13.0	61.8		13.0	55.7	
Actuated g/C Ratio	0.30	0.11	0.51		0.11	0.46	
Clearance Time (s)	4.1	4.1			4.1	4.1	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	
Lane Grp Cap (vph)	551	177	1856		198	1697	
v/s Ratio Prot		0.03	c0.24		c0.05	0.12	
v/s Ratio Perm	c0.16						
v/c Ratio	0.54	0.23	0.46		0.46	0.26	
Uniform Delay, d1	35.0	48.9	18.5		50.2	19.6	
Progression Factor	1.00	1.00	0.36		1.00	1.00	
Incremental Delay, d2	1.1	0.7	0.2		1.7	0.4	
Delay (s)	36.1	49.6	6.7		52.0	19.9	
Level of Service	Ð	D	Α		D	₿	
Approach Delay (s)	43.7		6.7			25.5	
Approach LOS	D		Α			С	
ntersection Summary	HERE SELECT	VI-575/18985	ASSAUR	THE SEC	CEPTIZAR CENT	E89725050	
HCM 2000 Control Delay	at A Tour visibility of ye	100 April 100 Ap	23.7	Ц	CM 2000	Level of Ser	vice C
HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio			0.53	- "	OW 2000	FEACI OI OEI	AICE C
Actuated Cycle Length (s)			120.0	c	um of los	t time /e\	18.3
Intersection Capacity Utiliz			51.0%			of Service	A
Analysis Period (min)	auth		15	IC.	A FCACI	OF OCTAINS	^
c Critical Lane Group			13				
c Cilical Latte Group							